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Abstract: Goal based systems have seen increasing interest in complex, adaptive systems. While there are a number of
approaches to eliciting goal-based requirements and to using goals at runtime, there are no frameworks that use
goals for requirements while providing a direct mapping to goals used to drive the system at runtime. The Goal Model
for Dynamic Systems (GMoDS) presented in this paper allows a designer to specify goals during requirements and
then use those same goals throughout system development and at runtime.

1. INTRODUCTION

Software technology has evolved rapidly over the last
few decades. As early software systems typically solved
small problems in a single domain, much of a
programmer’s time was spent making algorithms run
efficiently within memory and processing constraints. As
a result, the abstraction level of the design was not far
above to that of code. As processing speed and memory
size has increased, the expectations of the software
running on those machines have increased as well.
Specifically, users now expect their systems to be
“intelligent” enough to adapt to the problem being solved
and to the environment within which the system is
executing. To meet these expectations, software designers
have attempted to create software that emulates human
problem solving abilities using information from a variety
of resources covering multiple domains. While this
approach has yielded increasingly capable systems,
system complexity has increased dramatically making it
more difficult to understand, analyze, and build such
systems.

Goal models have been proposed as an approach to
managing software system complexity by helping to
manage requirement complexity and to build systems that
can adapt more readily to changes in requirements [12].
Goals capture “why” a particular task is required. Thus,
goals are the key to building systems that can adapt to a
wide variety of situations including changes in the
environment, changes in capabilities of system
components, and changes in the problem to be solved
[2]. In a distributed system, it is often the case that several
tasks can be performed by several different system
components. Only by knowing the goal (or the reason
why) the task needs to be performed can the system make

an intelligent choice about which task to execute on which
component.

Systems that use goals at runtime have been a staple
in the Artificial Intelligence (AI) planning community
for decades [5]. AI planners allow systems to choose the
appropriate steps required to achieve a specified state of
the world. Planning algorithms recursively decompose
this system level goal into sub-goals until actions are
found that achieve those sub-goals. Other architectures
use reactive planning such as the Procedural Reasoning
System (PRS) of Georgeff and Lansky [5]. While similar
to the goal model proposed in this paper, these approaches
are generally limited to single agents and do not provide
support from requirements through implementation.

Thus, we have found no frameworks for developing
complex systems that use goals to capture requirements
while providing a direct mapping to goals that drive the
system at runtime. The benefits of such a framework
would be twofold. First, such a framework would provide
a consistent view of the requirements from analysis,
through design to implementation, thus ensuring that
requirements were directly accounted for at all stages of
the system development. Second, such a framework
would allow the system to adapt to the dynamics of the
problem being solved as well as the system’s
environment.

In this paper, we present our Goal Model for
Dynamic Systems (GMoDS), which provides a set of
models for capturing system level goals and for using
those goals during design and at runtime to allow the
system to adapt to dynamic problems and environments.
GMoDS has three distinct models: a goal specification
model that captures the designer intent, a runtime model
that defines the semantics of the specification model, and
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an execution model that implements the instance model.
Next, we review related work, followed by the definition
of the GMoDS models. We conclude with an example of
their use and a discussion of results and future work.

1.1. Related Work

Goals have been used to capture requirements for
traditional systems as well as agent-oriented systems as
goals tend to capture “what” the system is supposed to
do instead of “how” the system is supposed to behave. It
has been argued that goals are a more natural way to
model system requirements, as they tend to change less
often that the functions of the software.

The Knowledge Acquisition in autOmated
Specification (KAOS) framework was developed for
modeling system requirements [12]. The KAOS model
is closely related to requirements elicitation and allows
system goals to be specified at a high-level and then
decomposed (either disjunctively or conjunctively) into
a set of sub-goals. KAOS also specifies that goals can
contribute to or degrade the achievement of other goals
and allows the system to determine which agents in the
system are best capable of achieving specific goals.

The i* framework was designed to for organization
based systems [14] and focuses on the interactions
between actors, which are considered to be autonomous.
Actors may control limited resources forcing interaction
between actors to accomplish system goals. Dependencies
between the actors are modeled in a strategic dependency
model, which specifies interactions between actors. The
i* framework focuses on early requirements elicitation
and guiding system design; it is not an implementation
device.

On the other end of the spectrum, the
PRACTIONIST framework [9] includes the notion of a
runtime goal model to support the implementation of
individual BDI agents. In the PRACTIONIST framework,
desires and intentions are derived from the system goals
captured in the goal model. Relationships between goals
include inconsistency, entailment, precondition, and
depends. However, the PRACTIONIST framework
assumes agents are designed using traditional BDI
approaches and therefore is not generalizable.

Multiagent system specification is not a trivial task
and thus there has been a significant amount of work
toward making the specification of multiagent systems a
sound and complete process. Many agent-oriented
methodologies use goals explicitly either at design time
or runtime [10], [7], [11], [6], and [3] Goal models have
been used for requirements elicitation in many agent-
based methodologies including Gaia, MaSE,

ROADMAP, and Tropos; however, none use goals
directly during implementation or runtime.

2. GMODS DEFINITION

Due to space limitations of this paper, we cannot provide
the complete formal semantics of the GMoDS model.
For a more complete definition of the semantics, the
reader is referred to [8].

2.1. Specification Model

The specification model has three main entities: goals,
events, and parameters. A goal is an observable desired
state of the world while an event is an observable
phenomenon that occurs during system execution. Goal
and event parameters provide information to agents on
the details of the goal to be achieved or the specific event
occurrence. While an agent is pursuing a goal, a number
of events may occur. These events may cause other goals
in the system to be added or removed. The new goals
added to the system are parameterized based on the
parameters of the event that triggered their creation.
Essentially, an agent can specialize its performance based
on the parameters of the goal it has been assigned to
achieve, which, in turn, are based on the parameters of
the triggering event. GMoDS defines two types of goals:
goal classes and goal instances. Goal classes are goals
that are specified by the system designer to model the
goal interactions within the organization. Goal instances
are the runtime instantiation of a goal class with specific
parameters. The instance/instanceOf relations capture the
connection between goal classes and goal instances. Each
goal instance is an instance of exactly one goal class,
and a goal class may have zero or more goal instances.

2.1.1. Goal Specification Tree

Goal trees are a natural approach to problem
decomposition as shown Figure 1. Upper level goals
(parents) are decomposed into lower level sub-goals
(children) and each parent has either a conjunctive or
disjunctive achievement condition as shown via the «and»
and «or» decoration in Figure 1. Goals without children
are known as leaf goals. A GMoDS goal specification
tree (G

Spec
) specifies how the goal classes are related to

one another. The goal classes in the goal specification
tree are analogous to the specification of classes in an
object-oriented language. Classes are designed before
hand, and then are dynamically instantiated during
runtime, each instance having its own set of attributes.
The instances of a goal class are independent of each
other. The goal instances are inserted into a goal instance
tree (G

Instance
) during runtime. Each goal instance is

achieved independently of every other instance of that
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goal. For example, suppose that a goal class exists to
rescue a victim. If there are three instances of the rescue
goal, they would represent three victims needing to be
rescued and the achievement of each rescue goal would
be independent.

2.1.2. Goal Triggers

GMoDS uses a set of relations within the tree structure to
specify how runtime goals may interact. Because goal
instances are created based on the occurrence of specific
events, the effect of these events on G

Instance
 must be

specified. The triggers relation between g
1
 and g

2

predicated on event e
1
 specifies that a new goal instance

of class g
2
 is created when e

1
 occurs during the pursuit of

a goal instance of class g
1
. Likewise, the negative trigger

relation from g
1
 to g

2
 on event e

1
 specifies that goal g

2

should be removed from G
Instance

 when e
1
 occurs. Figure 1

includes a trigger relation from g
4
 to g

5
 and from g

7
 to g

8
.

However, triggers cannot be used randomly. Suppose the
designer placed a trigger with event e

3
 between g

4
 and g

6

in Figure 1. If event e
3
 occurs before e

1
, no instance of g

5

would exist and thus g
6
 would have no parent goal.

Obviously, this is illegal; all inbound triggers must come
from the children of the same sub-tree.

To bootstrap G
Instance

, we define an initial event (or
initial trigger), e

0
, which must occur to add an initial set

of goals (including the root goal) to G
Instance

. When the
system starts, the initial event occurs and the root goal is
added to G

Instance
. Then all children not triggered by some

other event are systematically and recursively added to
G

Instance
.

2.1.3. Goal Precedence

To allow a full or partial ordered execution of goals in
the system, the designer may specify goal precedence in
the goal specification via the precedes relation. Goal
precedence ensures that no agents work on a specific goal
until all goals that precede that goal have been achieved.
An example would be that of object identification and
manipulation. The object must be first identified before
being manipulated.

Figure 2 is an extension of the example in Figure 1
with precedence relations inserted between g

2
 and g

3
 and

between g
6
 and g

7
. Because the notion of precedence only

applies to goals in the same triggered subtree, not all
instances of g

6
 must be achieved before any goals of g

7

may be pursued. Precedence only requires that all
instances of g

6
 in the same subtree (under goal g

5
) must

be achieved before instances of g
7
 in the same subtree

may be pursued.

There are several restrictions on specifying goal
precedence in G

Spec
. The first restriction is that of

precedence cycles; clearly, if a precedence cycle exists
then none of the goals may ever be pursued. Additionally,
a cycle of mixed triggers and precedes relationships is
disallowed since the mixed cycle also creates a set of
goals that cannot be assigned. It is also obvious that a
goal should never precede any of its ancestors (parents,
grandparents, etc.) A goal that preceded its parents would
imply that the parent must be achieved before the child
could be pursued.

Figure 1: Goal Specification Tree
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Figure 2: Specification Tree with Precedence

 
g0

<<and >>

e1(x:X) e2(y:Y)

g8

y : Y
g1

<<or>>

g2 g3 g4

g5

x : X
<<or>>

g6

x : X

g7

x : X
P P

1.1.1. G
Spec

 Formalization

Formally, the GMoDS specification tree, G
Spec

, is defined
as a tuple <G

s
, E

s
, subgoal, triggers, �triggers, precedes>

where

G
S

set(GoalClass)

E
S

set(EventClass)

GoalClass �name, FormalParameters�
EventClass �name, FormalParameters�
FormalParameters �set(ParameterType)�
ParameterType �name, type�

The basic tree structure, precedence, and triggers are
captured by a set of relations over goal classes and event
classes.

subgoal � G
S
 × G

S

triggers � G
S
 × E

S
 × G

S

�triggers � G
S
 × E

S
 × G

S

precedes � G
S
 × G

S
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The constraints on G
Spec

 with in relation to definition
as a tree are captured in the definitions and constraints
presented in Table 1.

There are several constraints from the discussion
above about how precedence and triggers can and cannot
be used (see Table 2). However, to be able to specify
these constraints, we need additional formal relations
based on G

Spec
, namely the closure of the precedence and

triggers relations. The precedence closure includes all
goals directly preceded as well as indirectly preceded via
a chain of precedence relations. In addition, the children
of all preceded goals are in the precedence closure. The
formal recursive definition is given below.

�g,g
1
,g2:G

S

(g, g
1
) � precedes � (g,g

1
) � precedes+

(g, g
1
) � precedes+ � (g

1
, g

2
) � subgoal � (g, g

2
) �

precedes+

(g, g
1
) � precedes+ � (g

1
, g

2
) � precedes � (g, g

2
) �

precedes+

The triggers closure is defined in a similar manner to the
precedence closure. The formal recursive definition of

triggers closure is given below (the �triggers+ relation is
defined in a similar manner.).

�g,g
1
,g

2
: G

S

(g, g
1
) � triggers � (g, g

1
) � triggers+

(g, g
1
) � triggers+ � (g

1
, g

2
) � subgoal � (g, g

2
) �

triggers+

(g, g
1
) � triggers+ � (g

1
, g

2
) � triggers � (g, g

2
) �

triggers+

One other constraint of interest relates to ensuring that
cycles of triggers and precedence relations are not
allowed. To check this constraint, we need to examine
the closure of the composition of the triggers and precedes
relations, which is defined as (triggers ° precedes)+. Any
goal related to itself the closure of the composition is
either in a precedence cycle, a triggers cycle, or in a mixed
precedence/triggers cycle, all of which are illegal.

2.2. Runtime Model

G
Spec

 allows the designer to specify the system hierarchy
and the relations between goal classes. G

Spec
 is used as a

template to create G
Instance

 at runtime. G
Instance

 retains the

Table 1
Definitions and Constraints on GSpec

Definitions

root : G
S
 � Boolean True if goal g is root goal of G

Spec

conjunctive : G
S
 � Boolean True if goal g is conjunctive parent goal

disjunctive : G
S
 � Boolean True if goal g is disjunctive parent goal

leaf : G
S
 � Boolean True if goal g is a leaf goal

Constraints

�g: G
S
 (g,g) � subgoal+ Goal g cannot be its own descendant (no loops)

�!g: G
S
 root(g) = True There is exactly one root goal

�g: G
S
 �root(g) � �!g

1
:G

s
 (g

1
, g) � subgoal All goals have exactly 1 parent except the root

�g: G
S
 root(g) ����g

1
:G

s
 (g

1
,g) � subgoal The root goal has no parents

�g: G
S
 (�g

1
: G

S
 (g, g

1
) � subgoal) ���leaf(g) Non-leaf goals are conjunctive or disjunctive
� (conjunctive(g) � disjunctive(g))

�g: G
S
 (��g

1
:G

S
 (g,g

1
) � subgoal) � leaf(g) Leaf goals are neither conjunctive or disjunctive
���(conjunctive(g) � disjunctive(g))

Table 2
Additional Constraints on GSpec

Constraints

� g
1
, g

2
, g

3
, g

4
: G

S
 (g

1,
g

2
) � triggers � (g

3
, g

2
) � subgoal+ All inbound triggers must come from the children of the

� (g
4
, g

3
) � triggers � (g

3
, g

1
) � subgoal+ same sub-tree

� g: G
S
 (g, g) � (triggers ° precedes)+. Cycles of triggers and precedes relationships are not

allowed

� g
1
, g

2
: G

S
 (g

1
,g

2
) � precedes+ Goals may not precede any of its ancestors or descendants

� ((g
1
, g

2
) � subgoal+ � (g

2
,g

1
) � subgoal+)
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structure of G
Spec

 while allowing dynamism by way of
triggering and precedence. At runtime, an instance goal
is created from a goal specification by creating an instance
goal with the same name and parameter types as its
associated specification goal. A goal’s parameter values
are provided by the triggering event or are inherited from
its parent in G

I
. The subgoalI relation is defined by the

system as it creates goal instances and is s analogous to
its counterpart in G

S
.

G
I

set(GoalInstance)
GoalInstance �name, ActualParameters�
ActualParameters �set(Parameter)�
Parameter �name, type, value�
subgoalI � G

I
 × G

I

To track the state of the system, the predicates
achieved, obviated, preceded, and failed are dynamically
set for each goal in G

Instance
.

preceded : G
I
 � Boolean

obviated : G
I
 � Boolean

achieved : G
I
 � Boolean

failed : G
I
 � Boolean

The achieved predicate states whether a goal has been
achieved by the system. For leaf goals, achieved becomes
True when the agent pursing the goal notifies the system
of its achievement. For parent goals, the value of the
achieved predicate is based on the achievement condition
(conjunction or disjunction) and the state of its children.
The obviated predicate states whether a goal is no longer
needed by the system. A goal becomes obviated if it is a
child of a disjunctive goal that has been achieved that
does not precede any other system goal. The preceded
predicate is True if a goal preceding it has not been
achieved or if a new goal may still be instantiated that
may precede it. The failed predicate is True if the system
has deemed that the goal can never be achieved by the
system.

2.3. Execution Model

The Execution Model implements GMoDS as defined
above using a collection of goal sets, which are analyzed
for completeness and correctness in [8]. The definition
of the GMoDS Execution Model makes the
implementation of GMoDS straightforward. The
semantics of the GMoDS Execution Model is based on
set theory, in which G

I
 is partitioned into six sub-sets:

G
I-Triggered

, G
I-Active

, G
I-Achieved

, G
I-Removed

, G
I-Failed

 and G
I-Obviated

as shown in Figure 3. Membership in these sets is based
upon the set of axioms defined in [8] such that the sets
partition G

I
. The arrows in Figure 3 indicate allowable

transitions of goals between sets.

The first set is the triggered set G
I-Triggered

, were all
goals are placed upon instantiation. Goals stay in this set
until one of the other predicates (obviated, preceded,
failed, or achieved) become True. The active set, G

I-Active
,

is the set of goals that are triggered but not preceded.
Essentially, G

I-Active
 is the set of goals that the system may

pursue. Goals in G
I-Active

 remain there until they are
achieved, failed, removed, or obviated. When an agent
achieves a goal, that goal is moved from the G

I-Active
 into

G
I-Achieved

. Once goals have moved into the G
I-Achieved

, they
cannot move to any other set aside from G

I-Removed
. The

removed set (G
I-Removed

) contains goals that have been
removed as the result of a negative trigger. A goal in the
removed set cannot be moved to any other set. When a
goal is removed, it is treated as if it never existed in the
system, which means that any precedence/triggers
relations related to that goal cease to exist when that goal
is removed. The failed set (G

I-Failed
) contains goals that

the system can never achieve. Once a goal has been
placed in G

I-Failed
, it goal may never leave as achievement

implies that the system has completed the goal, while
removal makes it as if the goal never existed. The
obviated set (G

I-Obviated
) contains goals that no longer need

be pursued by the system. These goals are not achieved,

Figure 3: Execution Model

GI-Triggered

GI-Obviated GI-Removed

GI-Failed

GI-Active GI-Achieved

and should not be assigned to any agents. Goals in
G

I-Obviated
 may be removed, but not failed. A formal

definition on the constraints imposed by the execution
model is listed below.

�g: G
I
 g�G

I-Triggered
� �obviated(g) ���achieved(g) �

preceded(g) �� �removed(g)
���failed(g)

�g:G
I
 g�G

I-Active
� �obviated(g) � �achieved(g) �

�preceded(g) ���failed(g)
�g:G

I
 g�G

I-Achieved
� achieved(g) ���preceded(g) ���

removed(g) ��� failed(g)
�g:G

I
 g�G

I-Failed
� failed(g) �� � removed(g) �

�achieved(g)
�g:G

I
 g�G

I-Removed
� removed(g) �� � failed(g) �

�achieved(g)
�g:G

I
 g�G

I-Obviated
� obviated(g) ��� removed(g) ���

failed(g)
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2.3.1. Runtime Execution Module

The system interacts with the runtime execution module
via two operations: occurred, and initialTrigger. The
initialTrigger operation creates the initial instance of G

I
,

including all goals instantiated by the initial trigger e
0
.

The occurred operation updates G
I
 based on the

occurrence of any other event. There are two types of
events of interest: application specific events as defined
in the G

Spec
, and general events such as goal achievement

or goal failure. The runtime execution model modifies
G

I
 appropriately based on the event that occurred. When

goals are achieved, the runtime execution module updates
G

I
 by moving the appropriate goals into G

I-Achieved
, moving

goals from G
I-Triggered

 into G
I-Active

 and moving goals to G
I-

Obviated
. Then, all goals in G

I-Triggered
 are checked to see if

their precedence restrictions have been removed. If all
precedence restrictions are satisfied, the goals are moved
to G

I Active
.

2.3.2. Execution Example

For example, if Figure 2 is our specification tree, then as
the system starts the initial event (e

0
) trigger occurs and

all goals that are not explicitly triggered in G
Spec

 are
instantiated as shown in Figure 4, which represents the
goal instance tree. We use parentheses in to the value of
the parameter passed from the triggering event.

At this point, G
I
 = {g

0
, g

1
, g

2
, g

3
, g

4
} with preceded(g

3
)

= True. We assume all predicates are False unless
specifically noted. At this the point, the execution model
look as follows.

G
I

= {g
0
, g

1
, g

2
, g

3
, g

4
}

G
I-Triggered

= {g
3
}

G
I-Active

= {g
0
,g

1
,g

2
,g

4
}

G
I-Achieved

= {}

G
I-Failed

= {}

G
I-Removed

= {}

G
I-Obviated

= {}

Goal precedence restricts the system’s choice of goals
to pursue. For example, in Figure 4, the system would
typically pursue all of the leaf goals in G

I-Triggered
, if

possible. However, due the precedence specified in Figure
2, goal g

3
 is not included in G

I-Active
 and thus may not be

pursued. The system is only able to pick goals from
G

I Active
 to attempt to achieve.

Continuing with our example, if event e
1
 (with

parameter of x = 1) occurs during the pursuit of g
4
, goal

g
5
(1) is instantiated along with its descendents. In fact,

multiple instances of e
1
 may occur during the pursuit of

g
4
 as shown Figure 5, which shows two separate

occurrences of e
1
, the second with parameter x = 2.

Figure 4: Goal Instance Tree after Initial Triggers
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Figure 5: G
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g7(2)
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g6(2)
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g1
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g0

At this point, G
I
 = {g

0
, g

1
, g

2
, g

3
, g

4
, g

5
(1), g

6
(1), g

7
(1),

g
5
(2), g

6
(2), g

7
(2)} with preceded(g

3
) = preceded(g

7
(1))

= preceded (g
7
(2)) = True. The status of the execution

model is given below.

G
I

= {g
0
, g

1
, g

2
, g

3
, g

4
, g

5
(1), g

6
(1), g

7
(1), g

5
(2),

g
6
(2), g

7
(2)}

G
I-Triggered

= {g
3
, g

7
(1), g

7
(2)}

G
I-Active

= {g
0
, g

1
, g

2
, g

4
, g

5
(1), g

5
(2), g

6
(1), g

6
(2)}

G
I-Achieved

= {}

G
I-Failed

= {}

G
I-Removed

= {}

G
I-Obviated

= {}

Disjunctive goals allow the system to choose which
goals to pursue, although there is no constraint on the
choice of which disjunctive child goal to pursue. In Figure
5, for example, goals g

2
 or g

4
 may both be pursued, or

the system may choose to pursue just one of them.
However, once a disjunctive goal is achieved (e.g. g

6
(2)

gets achieved thus achieving g
5
(2)), its non-achieved

children (e.g., g
7
(2)) become obviated. Thus, assuming

goal g
6
(1) is achieved then achieved(g

6
(1)) = True and

achieved(g
5
(1)) = True, since g

5
(1) is disjunctive (i.e.,

disjunctive (instance of(g
5
(1)) = True). As described

above, goal g
7
(1) becomes unnecessary and obviated

(g
7
(1)) = True. The execution model now looks like the

following.

G
I

= {g
0
, g

1
, g

2
, g

3
, g

4
, g

5
(1), g

6
(1), g

7
(1), g

5
(2),

g
6
(2), g

7
(2)}



A Goal Model for Adaptive Complex Systems 89

G
I-Triggered

= {g
3
, g

7
(2)}

G
I-Active

= {g
0
, g

1
, g

2
, g

4
, g

5
(2), g

6
(2)}

G
I-Achieved

= {g
5
(1), g

6
(1)}

G
I-Failed

= {}

G
I-Removed

= {}

G
I-Obviated

= {g
7
(1)}

At this point, we assume goal g
4
 is achieved resulting

in both the achievement of g
1
 and the obviation of g

2
 and

g
3
. The new state of the execution models becomes

G
I

= {g
0
, g

1
, g

3
, g

4
, g

5
(1), g

6
(1), g

7
(1), g

5
(2), g

6
(2),

g
7
(2)}

G
I-Triggered

= {g
7
(2)}

G
I-Active

= {g
0
, g

5
(2), g

6
(2)}

G
I-Achieved

= {g
5
(1), g

6
(1), g

4
, g

1
}

G
I-Failed

= {}

G
I-Removed

= {}

G
I-Obviated

= {g
7
(1), g

2
, g

3
}

Finally, if g
6
(2) is achieved, then g

5
(2) is achieved

and g
7
(2) is obviated as before. In addition, since g

1
, and

all instances of g
5
 have been achieved (and trivially all

instances of g
8
), g

0
 becomes achieved as well and we get

the results shown below.

G
I

= {g
0
, g

1
, g

3
, g

4
, g

5
(1), g

6
(1), g

7
(1), g

5
(2), g

6
(2),

g
7
(2)}

G
I-Triggered

= {}

G
I-Active

= {}

G
I-Achieved

= {g
5
(1), g

6
(1), g

4
, g

1
, g

6
(2), g

5
(2), g

0
}

G
I-Failed

= {}

G
I-Removed

= {}

G
I-Obviated

= {g
7
(1), g

2
, g

3
, g

7
(2)}

As we can see, there are no longer any active or
triggered goals; therefore, there can be no more goals
instantiated and the system is done. In addition, because
all goals are either achieved or obviated, we know that
the overall goal of the system has been achieved. In
actuality, we could have failed or removed goals and still
have the system be successful as long as the overall
system goal, g

0
, is achieved.

3. APPLICATION EXAMPLE

The application used to demonstrate the runtime
execution model is a simulated Weapons of Mass
Destruction (WMD) search system, where a team of
robots attempts to find, detect, and remove WMDs [8].
In the system, several robots (agents) search an area
looking for objects. When objects are found, the robots
determine whether the objects are WMDs or inert. The

team can detect three weapon types: biological, chemical,
and nuclear. Each team has exactly one robot capable of
detecting each type. If the object fails a test for one type,
it must be tested for the other types. Only if an object
fails all three tests can it be classified as inert.

3.1. Goal Specification Tree Design

The goal specification tree (G
Spec

) for the WMD system
is shown in Figure 6. The top-level goal is WMDSearch,
which has two children, FindWMD and RemoveWMD.
The intent of FindWMD is to search an area and identify
all objects; the intent of RemoveWMD is to remove a
verified weapon. FindWMD is conjunctively decomposed
into four children. The first, Initialize, determines the
number of robots in the system. The second goal,
AssignArea, divides the area to be searched into sub-areas.
SearchArea defines a sub-area to be searched. If objects
are found during the search, an IdentifyObject goal is
triggered, which seeks to identify weapons by their type.
The IdentifyObject goal has three children: CheckChem,
CheckRadio, and CheckBio, whose purpose is to identify
specific weapon types.

The triggers relations are denoted in Figure 6 by an
arrow with an event name. The goals Initialize ,
AssignArea, SearchArea and IdentifyObject are triggered
by different event types: initial, assign, search, and
objectFound respectively. When a WMD has been
positively identified, a WMDdetected event triggers a
RemoveWMD goal and the other children of the parent
IdentifyObject goal are removed from G

I
 via a negative

trigger (identified by a dotted arrow). The RemoveWMD
goal is preceded by the IdentifyObject goal, which is
denoted by and arrow with the label «Precedes». Thus,
RemoveWMD goals cannot be pursued until all
IdentifyObject goals have been achieved.

The IdentifyObject goal is conjunctively decomposed
to ensure that all checks are done if no WMDs are
detected (the goals are achieved even when the test is
run, even if no WMD is found). If decomposed
disjunctively, the IdentifyObject goal would be achieved
as soon as the first check was successfully completed,
regardless of whether a WMD was detected. The negative
triggers are included to ensure that once a test has
identified a WMD, no more tests are run as a
WMDdetected event triggers a RemoveWMD goal.

3.2. Goal Instance Tree

The WMDSearch goal instance tree, G
I
, is used at runtime

to guide the WMD system as it reacts to events. To
demonstrate the effectiveness of G

I
 at runtime, a snapshot

was taken each time events occurred that caused a change
to G

I. 
For brevity, we only show a portion of the snapshots.
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Snapshots depict G
I
 (goals in G

I-Triggered
 and G

I-Active
 only)

in tree form to allow comparison of G
I 
to G

Spec
. Grey ovals

with dashed edges denote the causal events while the
parameters for each goal are shown in parenthesis.

Figure 7 and Figure 8 show the operation of the
system at startup. Figure 7a depicts G

I
 after the initial

trigger while Figure 7b shows the instantiation of an
AssignArea(4) goal in response to a subsequent assign
event. Figure 7c represents the state of G

I
 after the

Initialize goal is achieved (and moved to G
I-Achieved

). Figure
8a shows the result of a search event, addition of a
SearchArea([0,0],[20,20]) goal, (the parameters indicate
the subarea). In Figure 8b, AssignArea(4) is achieved.

When an object is found, an objectFound event
occurs causing an IdentifyObject(1,1) goal and its
children CheckChem(1,1) , CheckRadio(1,1) , and
CheckBio(1,1) to be created as shown in Figure 9. Figure
10 shows a second occurrence of an objectFound event
and a second instance of an IdentifyObject(2,4) goal,
which shows how multiple instances of the same goal
are allowed in G

I
 while still conforming to G

Spec
.

Next, the CheckBio(1,1) goal is achieved resulting
in the G

I
 of Figure 11. Figure 12 shows the state of G

I

after a WMDdetected event triggers a RemoveWMD(2,4)
goal followed by the achievement of the
IdentifyObject(2,4)  goal. (The double line around
RemoveWMD(2,4) indicates that it is preceded and cannot
be moved into G

I-Active
.)

There are several snapshots between Figure 12 and
Figure 13. Two additional RemoveWMD goals were
triggered and the IdentifyObject(1,1) goal was achieved.
Although there are no IdentifyObject goals in G

I
, the three

RemoveWMD goals remain preceded since the

Figure 6: WMD Goal Specification Tree
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Figure 7: Initial, Assign, and Achieve Events

Figure 8: Search and Achieve Events

Figure 9: IdentifyObject Triggered at 1,1

Figure 10:IdentifyObject Triggered at 2,4
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SearchArea([0,0],[20,20]) goal is still active and could
potentially trigger other IdentifyObject goal. Once the
SearchArea([0,0],[20,20]) goal is achieved, as shown in
Figure 14, the RemoveWMD goals may be pursued. Once
all the RemoveWMD goals are achieved, the system
achieves its objective, WMDSearch.

Figure 11: CheckBio(1,1) is Achieved

Figure 12:RemoveWMD Goal Created

Figure 14:SearchArea Achieved

Figure 13:No More IdentifyObject Goals

4. USE OF GMODS

GMoDS has been used in several ways, most notably as
the requirements modeling for the Organization-based
Multiagent Systems (O-MaSE) methodology [4] and as
the runtime goal model for the Organization Model for
Adaptive Complex Systems (OMACS) [2]. GMoDS has

been used as part of O-MaSE to model several multiagent
and cooperative robotics applications. Many of these
systems have used the runtime executability of GMoDS
as part of various OMACS systems. Application areas
that GMoDS has been used include adaptive information
systems [2], medical decision supports systems [13], and
multi-robotic search systems [1].

5. CONCLUSIONS AND FUTURE WORK

Several frameworks have been developed for analyzing
system goals. While each is adequate for static systems,
none provides a continuous modeling/execution
framework that ensures the goals identified actually drive
the system during execution. GMoDS provides end-to-
end modeling and execution and allows systems to adapt
to changes in the environment and problem, a significant
advantage for complex, adaptive systems. The GMoDS
specification model includes the notions of goals, goal
decomposition, events, precedence, and goal
instantiation. The GMoDS instance model captures the
dynamics of the system state while maintaining the
structure of the specification model. The execution model,
which has been used in several multiagent and
cooperative robotic systems, implements these models
in an efficient manner.

Our plans include extending GMoDS to handle soft
goals, goal preferences, and goal metrics. Soft goals are
goals for non-functional requirements and have been
shown to be useful in requirements modeling. Goal
preferences allow the designer to define which disjunctive
goals are preferred, while goal metrics allow the goal
model to be evaluated quantitatively at design time. Some
prospective metrics include goal model flexibility, which
measures how well a system using a specific model can
adapt to failures; goal criticality, which ranks how
essential each goal is to achieving the overall goal; and
goal occurrence, which measures how often a specific
goal appears in successful system runs. In addition to
these enhancements, we are investigating adding
mechanisms for requiring simultaneous execution
constraints that will allow us to create n instances of a
single goal that must be assigned and pursued
simultaneously in order to support cooperative coalitions.
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