
International Journal of Computational Intelligence Theory and Practice, Vol. 4, No. 1, June 2009 © Serials Publications

Short Term Load Forecasting using A Novel Recurrent
Neural Network

Sanjib Mishra & Sarat Kumar Patra
NIT Rourkela, E-mails: sanjib.mishra77@gmail.com E-mail: skpatra@nitrkl.ac.in

Abstract: Short term load forecasting is essential to the operation of electricity companies. It enhances the energy-efficient and
reliable operation of power system. Neural networks (NNs) have powerful nonlinear mapping capabilities. Therefore, they
have been used to deal with predicting, in which the conventional methods fail to give satisfactory results. A novel Recurrent
neural network (RNN) is proposed in this paper. Many types of computational intelligent methods are available for time series
prediction. The novelty of this RNN lies in the usage of neurons instead of simple feedback loops for temporal relations. There
is flexibility to use any type of activation functions in both feed forward and feedback loops. Number of hidden neurons can be
changed on case to case basis for maximum accuracy. The performance of the RNN is demonstrated to be better than several
other computational intelligent methods available.

Index Terms: Short term load forecasting, recurrent neural network, computational intelligence

I. INTRODUCTION

Short term load forecasting is a time series prediction
problem. It analyzes the pattern of future electrical load.
The information is crucial to determine hydro-thermal
generation mixture, to allot transmission corridor, to
decrease over all loss of grid, and to increase operational
efficiency.

The load is decomposed into two components. One
is weather dependent, and the other is weather
independent. Each component is modeled separately and
the sum of these two gives the total load forecast. The
behavior of these two controls the total load pattern. The
behavior of weather independent load is mostly
represented by Fourier series or trend profiles in terms
of the time functions. The weather sensitive portion of
the load is arbitrarily extracted and modeled by a
predetermined functional relationship with weather
variables.

Time series nonlinear predictors can be formed by
placing zero-memory nonlinearity within the output stage
of classical linear predictor. The nonlinearity is restricted
to the output stage, as in a single layer neural network
realization. On the other hand, if the nonlinearity is
distributed through many layers of weighted
interconnections, the concept of neural networks is fully
exploited and more powerful nonlinear predictors may
ensue. For the purpose of prediction, memory stages may
be introduced at the input or within the network. In the
prediction of hourly load, the network will have only one

output neuron with a predicted value. For a dynamic
system, such as a recurrent neural network for prediction,
the state represents a set of quantities that summarizes
all the information about the past behavior of the system
that is needed to uniquely describe its future behavior.

The provision of feedback with delay introduces
memory to the network and so is appropriate for
prediction in case of recurrent neural networks. The
feedback within it can be achieved either a local or global
manner. The local feedback is achieved by the
introduction of feedback within the hidden layer, whereas
the global feedback is produced by the connection of the
network output to the network input as shown in figure
1. Inter neuron connections are also possible. The use of
the large number of tapped delay feedback input increases
the input dimension, resulting in increased dimensionality
problem.

Furthermore, the recurrent systems can inherently
produce multistep ahead predictions; so, the multistep
ahead prediction models, which are required in some
process control applications, such as predictive control,
can efficiently be built by RNNs [1]. Thus, the RNNs
have attracted great interest. The Hopfield [2], the Elman
[3], the Jordan [4], the fully recurrent [5], the locally-
recurrent [6], the recurrent radial basis function [7], and
the block-structured recurrent [8] networks are some of
the examples of RNNs. In these structures, the feedback
weights, assumed to be unity, are not trainable. The
Hopfield network [2] is a simple recurrent network which

International Journal of Computational Intelligence Theory and Practice, Vol. 1 No. 1 (January-June, 2015)

Journal of Advance Computational Research
Vol. 1 No. 1 (January-June, 2016)

40 International Journal of Computational Intelligence Theory and Practice

has a fully connected single-layer structure. It is capable
of restoring previously learned static patterns from their
corrupted realizations. Elman [3] and Jordan [4] proposed
specific recurrent networks which have an extra set of
context nodes that copy the delayed states of the hidden
or output nodes back to the hidden layer neurons. In these
structures, the feedback weights, assumed to be unity,
are not trainable. The fully recurrent neural network [5]
allows any neuron to be connected to any other neuron
in the network. While being more general, it lacks
stability. In [6], the local feedback has been taken before
the entry into the nonlinearity activation function. In [7],
the past output values of a radial basis function network
are fed back to both the network input and output nodes.
In [8], a systematic way to build networks of high
complexity using a block notation was given. The fully
recurrent neural network allows any neuron to be
connected to any other neuron in the network. While
being more general, it lacks stability.

In this paper, the architecture and training procedure
of a new RNN useful for short term load prediction /
forecasting is presented. The structure of the proposed
RNN differs from the other RNNs in the literature. The
main difference of the proposed network compared to
the available RNNs is that the temporal relations are
provided by means of neurons arranged in three feedback
layers, not by simple feedback elements, in order to enrich
the representation capabilities of the recurrent networks.
The feedback signals are processed in three feedback
layers which contain neurons as in feedforward layers.
In these feedback layers, the weighted sums of the delayed
outputs of the hidden and output layers are passed through
activation functions and applied to the feedforward
neurons via some adjustable weights.

Following this introduction the remaining paper is
organized as under. Section II provides details of
proposed recurrent neural network while Section III
analyzes the input & output parameters. The experimental
results are presented in Section IV. Section V provides
concluding remarks.

II. PROPOSED RECURRENT NEURAL NETWORK

The RNN architecture used here is presented in figure 2,
where Input(k) & y(k) represents the input and output of
the RNN, respectively, and k is the time index. The RNN
has three feedforward and feedback layers. In the
feedforward layers, W

1
 & W

2
, represent the weights

between the input and hidden layers, and the hidden and
output layers, respectively. In addition to the feedforward
layers, the RNN has two local and one global feedback
layers. In these feedback layers, the weighted sums of
the delayed outputs of the hidden and output layers are

applied to certain activation functions as in the
feedforward layer neurons. W

b1
, W

b2
 & W

b3
 represent the

weights connected to the inputs of the feedback layer
neurons and z–1 represents the time delay operators. The
outputs of the feedback layers neurons h

c
(k), y

c
(k) & z

c
(k)

are applied to the hidden and output layers neurons via
the adjustable weights W

c1
, W

c2
, W

c3
.

The number of hidden neurons in this case is taken
as two but should be tuned as per requirement of
individual problem requirements. The number of neurons
in the feedback layer from the hidden-to-hidden layer is
set equal to the number of the hidden layer neurons i.e.
two. The number of neurons in the feedback layer from
the output-to-hidden layer is set equal to the number of
the output layer neurons i.e. one. The number of neurons
in the feedback layer from the output-to-output layer is
set equal to the number of the output layer neurons i.e.
one. However, their numbers can be adjusted to improve
the accuracy on case to case basis. The numbers were
finalized on trial and error.

Since the weights are updated by the back
propagation method, the calculation of the Jacobian
matrix is required. The backward phase computations
from k = T to k = 1 are performed by means of the back
propagated path values of the MFLNN. When the forward
and backward phases of the computations are completed,
the sensitivities for each weight, which form the Jacobian
matrix, are obtained as in the back propagation algorithm.

As it was expressed previously, the elements of the
Jacobian matrix are computed in two stages which are

Figure 1: Structure of a Recurrent Neural Network with Local and
Global Feedback

Short Term Load Forecasting using a Novel Recurrent Neural Network 41

referred to as the forward and backward phases. In the
forward phase, the RNN actions are computed and stored
from k = 1 to k = T through the trajectory. The errors at
every k are determined as the differences between the
desired outputs and the RNN outputs. The initial values
for the output of the hidden layer (h) and of the output
layer (y) are set to 0. The net quantities produced at the
input of the activation functions of the feedback neurons
are

� �
� �
� �

1 1

2 2

3 3

(0) 0, (0) 0

() * (1)

() * (1)

() * (1)

ch b b

cy b b

cz b b

h y

forout k W h k B

forout k W y k B

forout k W y k B

� �

� � �

� � �

� � �

Where W
b1

, W
b2

 & W
b3

 the input weights of the feedback
layers and B

b1
, B

b2
 & B

b3
 are the biases of the feedback

layer neurons. The outputs of the feedback layer neurons
h

c
, y

c
 & z

c
 are computed by

h
c
 = tanh (forout

ch
(k))

y
c
 = tanh(forout

cy
(k))

z
c
 = tanh(forout

cz
(k))

Where W
1
 represents the weights between the input and

hidden layers, and B
1
 the biases applied to the hidden

layer neurons. W
c1

& W
c2

 are the weights of the feedback
layers. tanh represents the hidden layer activation
functions. Similarly, the net quantities forout

y
 of the

output layer neurons and their outputs (y)are computed
by

� � � �
� �

2 3 2() * () * ()

() ()

T T
y c c

y

forout k W h k W z k B

y k purelin forout k

� � �

�

Where W
2
,

 B

2
 & tanh represent the weights between the

hidden and output layers, the biases applied to the output
layer neurons, and the output layer activation functions,
respectively. W

c3
 represents the output weights of the

feedback layer. The error signal (e) is defined as the
difference between the RNN output (y) and the desired
output (Output).

e(k) = y(k) – Output(k)

The weights are adjusted to minimize the error (e),
so the sensitivities with respect to each weight have to
be computed. At every (k), the sensitivity for each weight
is computed by multiplying the input of this weight in
the RNN and the back propagated path, so the inputs of
the weights in the back propagated path have to be
computed. Therefore, after completing the forward phase
computations, the backward phase computation is carried
out through the back propagated path of RNN from
k = T to k = 1. The local sensitivities at k = T + 1 are set
to 0.

3

2

1

(1) 0

(1) 0

(1) 0

c

c

c

T

T

T

� � �

� � �
� � �

The local sensitivities are obtained as

� � � �
� �

� �
� �
� �

� � � �
� � � �
� �

2 22
2

3 3

1 12
1

2 2

2
3 3 2

2
2 2 1

2
1

1 * (1)
() sec () *

* (1)

* (1)
() sec () *

* ()

() sec () * * ()

() sec () * * ()

() sec () *

b c

y

b c

b c

h

c cz c

c cy c

c ch c

W k
k h forout k

W k

W k
k h forout k

W k

k h forout k W k

k h forout k W k

k h forout k W

� � � � ��
� � � �

� �� �� �
� � � ��

� � � �
�� �� �

� � �

� � �

� � � �1 1* ()k�

Then, the sensitivity for each weight is computed by
multiplying the values scaled by this weight in the RNN
and the back propagated path as follows:

Figure 2: Structure of the Proposed RNN

Where tanh represent the activation functions of the
feedback layer neurons. The net quantities forout of the
hidden layer neurons and their outputs (h) are computed
by

� �
� �
� �

� �

1

1

2 1

* ()
() * ()

* ()

() tanh ()

c c
T

h
T

c c

h

W h k
forout k W Input k

W y k B

h k forout k

� ��
� �� �
� ��� �

�

42 International Journal of Computational Intelligence Theory and Practice

2
2

2
2

1
1

1
1

2
3

3
3

1
2

2
2

1
1

1
1

()
() * ()

()
()

()
() * ()

()
()

()
() * ()

()
() * (1)

()
() * ()

()
() * (1)

()
() * ()

()
()

T
c

c

T
c

b

T
c

c

T
c

b

T
c

c

c
b

e k
k h k

W

e k
k

B

e k
k Input k

W

e k
k

B

e k
k z k

W

e k
k y k

W

e k
k y k

W

e k
k y k

W

e k
k h k

W

e k
k

W

�
� �

�
�

� �
�
�

� �
�
�

� �
�
�

� �
�
�

� � �
�
�

� �
�
�

� � �
�
�

� �
�
�

� �
�

3
3

2
2

1
1

* (1)

()
()

()
()

()
()

T

c
b

c
b

c
b

h k

e k
k

B

e k
k

B

e k
k

B

�

�
� �

�
�

� �
�
�

� �
�

Then network weights & biases can be calculated as
follows:

1 1
1

1 1

1

1 1
1

2 2
2

2 2
2

2 2
2

3 3

()
* ()*

()
* () *

()
* () *

()
* () *

()
* () *

()
* () *

()
* () *

b b
b

b b

b

c c
c

b b
b

b b
b

c c
c

b b

e k
W W e c

W

e k
B B e c

B

e k
W W e c

W

e k
W W e c

W

e k
B B e c

B

e k
W W e c

W

e k
W W e c

� ��
� � �� ��� �

� ��
� � �� ��� �

� ��
� � �� ��� �

� ��
� � �� ��� �

� ��
� � �� ��� �

� ��
� � �� ��� �

�
� � �

3

3 3
3

3 3
3

()
* ()*

()
* () *

b

b b
b

c c
c

W

e k
B B e c

B

e k
W W e c

W

� �
� ��� �
� ��

� � �� ��� �
� ��

� � �� ��� �

1 1
1

1 1
1

2 2
2

2 2

2

()
* () *

()
* ()*

()
* () *

()
* ()*

e k
W W e c

W

e k
B B e c

B

e k
W W e c

W

e k
B B e c

B

� ��
� � �� ��� �

� ��
� � �� ��� �

� ��
� � �� ��� �

� ��
� � �� ��� �

(µ) is the learning rate of the RNN. “Purelin” & “logsig”
activation functions are used in this simulation.

III. INPUT & OUTPUT FOR THE RNN MODEL

In our analysis, the ANN model uses nine inputs, which
constitute the load at hour ‘hr-1’ , ‘hr-2’, ‘hr-3’ of same
day, ‘hr’, ‘hr-1’, ‘hr-2’ of previous day, & ‘hr’, ‘hr-1’,
‘hr-2’ of same day of previous week. Only one output
node is used representing a 24-hour ahead load forecast
at hour ‘hr’ in the lead time.

The reason behind taking the specific inputs are as
follows: It takes into consideration the hour of the day
effect to map hourly load variation. Day of the week is
taken into account to map weekly pattern of industrial
and commercial load pattern on week days and
weekends. Seasonal variation is gradual so previous day
load pattern as an explicit input takes care of seasonal
mapping.

IV. SIMULATION RESULTS

The acceptable criteria for a particular model is based
upon the (i) mean average percentage error (MAPE),
(ii) number of hours in which it gives negative MAPE,
(iii) time taken by the model to get trained. The acceptable
criteria (i) & (iii) are self explanatory. The second criteria
signifies the under estimation of required load. Under
estimation of load may stress the generation units. The
performance of the proposed system has been compared
with performance of other soft computing techniques
using same training data set.

The minimum mean average percentage error (i.e.
MAPE) in case of Back propagation trained Multi Layer
Perceptron Neural Network (BP-MLP), was found to be
2.5512 % with logsig activation function with a network
using 17 hidden neurons, learning rate of 0.1, & Guyen-
Widrow parameter initialization [9].

In case of Genetic Algorithm trained Multi Layer
Perceptron Neural Network (GA-MLP), the best result
was found to be, MAPE of 2.1331 %, with 4 hidden
neurons, and tansig activation function.

Short Term Load Forecasting using a Novel Recurrent Neural Network 43

In case of Particle Swarm Optimization trained Multi
Layer Perceptron Neural Network (PSO-MLP), the best
MAPE of 2.0748 % was achieved using 4 hidden neurons
using logsig activation function.

In case of Artificial Immune System trained Multi
Layer Perceptron Neural Network (AIS-MLP), the best
MAPE of 3.9869 % was achieved using 4 hidden neurons
using logsig activation function.

In case of the proposed RNN, the best result was
MAPE of 1.8515 %, with 2 hidden neurons and tanh
activation function.

We have compared result with Adaptive Neuro Fuzzy
Inference System (ANFIS), which provided best
performance MAPE of 1.7505%.

Prediction performance of algorithms cited in Table.1
for different days of a year with ten days interval is
tabulated in Table 2. The minimum value of MAPE for a

specific forecasted day is highlighted in the color same
as the corresponding algorithm highlighting color. Fig.3
describes the results graphically.

In Table 3, the prediction performance of the
proposed RNN is tabulated taking into consideration type
of initialization method & number of hidden neurons.
The first row gives the formula / standard Matlab

Table 2
MAPE for Different Algorithms

MAPE in %

Forecasted Day RNN PSO GA BP ANFIS AIS Min. MAPE in %

38 2.5058 3.9252 3.2463 3.3999 2.6005 7.3829 2.5058
48 2.515 4.8058 4.1073 2.9817 4.8723 6.7753 2.515
58 2.8246 3.0832 4.1287 3.6983 4.1178 5.4296 2.8246
68 5.9872 5.7972 6.7795 10.857 7.1008 16.2978 5.7972
78 4.1836 6.584 6.1948 5.0064 9.4502 9.9884 4.1836
88 4.1054 3.3303 6.4879 4.8648 3.5845 11.089 3.3303
98 3.0897 6.0078 6.8629 4.6654 3.0966 15.0009 3.0897
108 2.2356 7.2016 6.596 4.4614 3.1853 11.3845 2.2356
118 5.1856 5.6647 7.3346 5.8641 2.8272 10.693 2.8272
128 5.135 8.382 7.2612 6.4135 5.6529 13.6429 5.135
138 4.7324 8.1828 6.8799 6.1848 5.1995 9.3278 4.7324
148 3.971 7.2797 6.3819 4.1229 3.4567 14.9945 3.4567
158 4.287 6.8941 7.9228 6.4008 4.8156 14.0065 4.287
168 4.8313 6.6235 5.4471 5.4926 3.351 9.9973 3.351
178 3.4942 7.7839 5.6693 4.8353 2.4007 8.3081 2.4007
188 5.5597 5.5501 6.534 6.0204 4.2112 10.2101 4.2112
198 2.9065 6.6366 5.2949 3.2805 2.9617 7.8238 2.9065
208 2.5477 2.3002 4.1691 3.6629 6.882 7.0529 2.3002
218 1.9966 2.8583 2.8516 2.8102 9.5208 3.9869 1.9966
228 2.5437 2.8844 3.4632 3.1102 2.7833 5.7865 2.5437
238 3.6476 3.4 5.0082 3.9777 2.0411 7.7786 2.0411
248 1.8015 2.4227 2.1331 2.6848 1.814 5.3147 1.8015
258 3.289 4.3223 3.6149 3.341 7.749 8.9318 3.289
268 2.5874 2.0748 3.1062 3.4481 1.7015 4.2912 1.7015
278 2.7438 2.5483 2.3901 2.5512 3.4771 6.6248 2.3901
288 2.0366 3.579 3.6706 2.8106 2.1296 8.0993 2.0366
298 3.2513 3.7053 3.5433 3.6867 6.3116 8.4539 3.2513
308 3.8914 3.175 4.9403 4.8761 3.9409 6.7971 3.175
318 2.9107 3.5821 4.9228 3.7574 2.9512 6.6712 2.9107
328 4.4412 5.1506 5.3382 4.944 4.491 6.721 4.4412
338 3.3859 3.0508 4.1621 3.3731 4.8864 6.7823 3.0508
348 3.4505 3.9801 4.3726 3.7919 2.2507 6.99 2.2507
358 3.8607 2.7123 4.5196 4.5042 3.2742 6.1525 2.7123

Table 1
MAPE Comparisons

Network Best MAPE in%

BP-MLP 2.5512
GA-MLP 2.1331
PSO-MLP 2.0748
AIS-MLP 3.9869
ANFIS 1.7505
Proposed RNN 1.8515

44 International Journal of Computational Intelligence Theory and Practice

Table 3
Performance Index Comparison of Proposed RNN Model

A.*R A.*R 2.*R 2.*R Rands Rands Randnr Randnr Randnc Randnc Rand Rand NW NW Min.
and- and- and- and- 9-2-1 9-3-1 9-2-1 9-3-1 9-2-1 9-3-1 9-2-1 9-3-1 9-2-1 9-3-1 %
(A/2) (A/2) 1 1 Error
9-2-1 9-3-1 9-2-1 9-3-1

4.171 4.107 3.126 4.416 3.126 4.41 -0.98 -4.29 4.03 4.53 4.57 5.15 3.92 3.80 0.98

4.416 4.243 4.546 3.668 4.546 3.66 -4.61 -15.1 2.80 7.05 7.31 6.53 5.80 4.60 2.80

3.842 3.515 6.368 4.002 6.368 4.00 -10.5 -30.7 4.68 9.889 11.99 10.54 8.846 5.51 3.51

0.989 0.614 5.646 2.384 5.646 2.38 -16.4 -41.6 4.84 10.77 13.90 16.14 9.311 4.50 0.61

-0.55 -0.75 4.754 1.220 4.754 1.22 -15.2 -36.1 5.62 8.545 11.46 14.82 8.899 3.93 0.55

-3.93 -4.02 -0.82 -2.98 -0.82 -2.9 -12.0 -23.6 0.05 2.311 2.363 4.191 1.475 -1.40 0.05

-1.85 -2.57 -0.69 -0.35 -0.69 -0.3 -12.9 -23.1 -0.59 -1.17 -1.76 -0.25 -2.31 -2.24 0.25

-2.00 -2.63 -3.72 -3.03 -3.72 -3.0 -18.5 -32.3 -3.79 -4.71 -5.62 -4.00 -6.60 -4.04 2.00

1.208 1.511 -2.50 -1.88 -2.50 -1.8 -20.2 -34.9 -1.92 -2.58 -3.21 -1.17 -4.45 -1.37 1.17

-3.44 -2.34 -6.85 -5.32 -6.85 -5.3 -29.6 -49.4 -6.69 -7.92 -8.94 -6.18 -10.3 -6.66 2.34

-0.17 0.630 -3.50 -4.45 -3.50 -4.4 -32.1 -60.6 -4.10 -5.70 -7.42 -3.78 -8.77 -4.88 0.17

0.270 1.182 -12.1 -4.55 -12.1 -4.5 -33.0 -53.2 -7.85 -7.41 -9.82 -12.7 -11.8 -5.44 0.27

5.886 6.720 0.189 2.279 0.189 2.27 -9.58 -20.4 1.77 2.923 3.052 0.439 1.300 2.75 0.18

2.471 3.608 3.308 1.162 3.308 1.16 -13.4 -32.6 1.53 6.802 8.479 5.692 5.554 2.36 1.16

2.920 3.243 7.879 4.327 7.879 4.32 -18.7 -47.3 7.09 13.19 17.58 18.73 12.34 7.24 2.92

2.757 2.736 8.930 5.127 8.930 5.12 -16.6 -42.9 8.66 13.11 18.43 22.72 14.08 8.44 2.73

-2.52 -2.72 4.374 -0.47 4.374 -0.4 -18.6 -42.1 5.85 9.596 10.63 14.39 8.851 2.67 0.47

-5.38 -5.88 -4.14 -5.59 -4.14 -5.5 -12.3 -21.6 -3.30 -1.19 -1.56 -0.35 -2.75 -3.64 0.35

-3.91 -5.93 -2.84 -3.05 -2.84 -3.0 -24.3 -43.6 -2.33 -3.41 -4.34 -1.67 -5.51 -3.44 1.67

-8.45 -8.47 -9.74 -6.34 -9.74 -6.3 -52.2 -90.4 -10.3 -12.5 -14.3 -9.05 -16.1 -11.2 6.34

1.047 1.290 -10.5 -6.26 -10.5 -6.2 -64.6 -110. -8.89 -12.0 -15.0 -9.78 -18.5 -8.06 1.04

Figure 3: MAPE for Different Algorithms

Short Term Load Forecasting using a Novel Recurrent Neural Network 45

functions used to initialize the parameters (weight & bias)
of neurons.

The value of A is taken as 0.72, Rand, Randnr, Rands,
Randnc are standard Matlab random value generation
functions. NW is Nguyen Widrow method of parameter
initialization. The network is trained and tested with same
set of historical data, so that we can select the parameter
initialization method which will give the least Mean
Average Percentage Error (MAPE). After the network is
trained, it is subjected to testing data for prediction of

next 21 (twenty one) hours load. The % prediction errors
for each type of initialization method are delineated
column wise under the respective initialization methods.

In Table 4, first row signifies summation of absolute
percentage errors, second row gives number of minimum
percentage errors provided by each method for a given
testing data set, third row gives the number of negative
% errors, fourth row gives the MAPE & fifth row gives
the computation time required for testing for respective
parameter initialization method.

Table 4
Percentage Error in Hourly Load Forecasting by Proposed RNN Model

A.*R A.*R 2.*R 2.*R Rands Rands Randnr Randnr Randnc Randnc Rand Rand NW NW
and- and- and- and- 9-2-1 9-3-1 9-2-1 9-3-1 9-2-1 9-3-1 9-2-1 9-3-1 9-2-1 9-3-1
(A/2) (A/2) 1 1
9-2-1 9-3-1 9-2-1 9-3-1

62.22 68.77 106.6 72.92 106.6 72.9 4.37E 8.57E 96.8 147.3 181.8 168.3 167.7 98.3 Total
+02 +02 Abs. %

Error

6 4 1 3 1 2 1 0 2 0 0 4 0 0 No. of
Min. %
Error

10 9 11 12 11 12 21 21 10 10 10 10 10 11 Negative
% Error

12 11 5 9 5 8 1 0 7 5 3 5 4 6 Error
less
than 3%

2.963 3.275 5.079 3.472 5.07 3.47 20.81 40.82 4.61 7.01 8.65 8.01 7.98 4.68 Avg.
hourly %
Error

10.88 11.06 10.5 10.51 10.4 11.1 10.83 10.41 11.9 10.7 11.0 11.0 10.4 10.8 Compu-
tation
Time

V. CONCLUSION

The performance of the proposed RNN is compared with
several other computational intelligence methods like
multi layer perceptron neural network (MLPNN),
MLPNN trained by GA, MLPNN trained by PSO, ANFIS
to show the superiority in terms of accuracy of prediction.
It has been shown that the proposed RNN achieves higher
accuracy with less number of neurons.

The main advantages of the proposed RNN are as
follows:

The temporal relations are provided by neurons, not
be simple feedback paths, which enhance the nonlinear
mapping capability.

It has a flexible feedback structure, so we can use
different types of activation functions and different

number of neurons on case to case basis for increasing
accuracy.

REFERENCES

[1] D. P. Mandic, J. A. Chambers, Recurrent Neural
Networks for Prediction. New York: Jhon Wiley & Sons,
2001.

[2] J. J. Hopfield, “Neural Networks and Physical Systems
with Emergent Collective Computational Abilities,”
Proc. Nat. Acad. Sci., 79, 2554–2558, 1982.

[3] J. L. Elman, “Finding Structures in Time,” Cogn. Sci.,
14, 179–211, 1990.

[4] M. I. Jordan, “Supervised Learning and Systems with
Excess Degrees of Freedom” COINS, Mass. Inst.
Technol., Cambridge, MA, 1988, Tech. Rep. 88-27.

46 International Journal of Computational Intelligence Theory and Practice

[5] R. J. Williams and D. Zipser, “A Learning Algorithm for
Continually Running Fully Recurrent Neural Networks,”
Neural Comput., 1, 270–280, 1989.

[6] A. C. Tsoi and A. D. Back, “Locally Recurrent Globally
Feedforward Networks: A Critical Review of
Architectures,” IEEE Trans. Neural Netw., 5(2), 229–
239, 1994.

[7] S. A. Billings and C. F. Fung, “Recurrent Radial Basis
Function Networks for Adaptive Noise Cancellation,”
Neural Netw., 8(2), 273–290, 1995.

[8] S. Santini, A. D. Bimbo, and R. Jain, “Block-structured
Recurrent Neural Networks,” Neural Netw., 8(1), 135–
147, 1995.

[9] D. Nguyen and B. Widrow, “Improving the Learning
Speed of 2-layer Neural Networks by Choosing Initial
Values of the Adaptive Weights,” in Proc. Int. Joint Conf.
Neural Netw., 3, pp. 21–26, 1990.

