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INTUITIONISTIC FUZZY LATTICES

ABSTRACT: We provide a general development of the theory of intuitionistic
fuzzy sublattices. We prove structural theorems for intuitionistic fuzzy
sublattices and intuitionistic fuzzy ideals (filter) generated by an intuitionistic
fuzzy set. Various intuitionistic fuzzy analogs of the results of classical theory
are established. Also we deal with the homomorphic images and pre-images
of intuitionistic fuzzy sublattices.

2000 Mathematics Subject Classification of AMS: 03F55, 03G10, 06D10.

Keywords and phrases: intuitionistic fuzzy set, intuitionistic fuzzy sublattice,
intuitionistic fuzzy ideal (filter), intuitionistic fuzzy prime ideal (filter),
intuitionistic fuzzy convex lattice.

1. INTRODUCTION

The theory of fuzzy sets proposed by Zadeh[24] in 1965 has achieved a great success
in various fields. After that time, some autors[20, 21] applied this concept to group
theory. In particular, Yuan and Wu[21] investigated fuzzy ideals and fuzzy
congruences on a distributive lattice. Moreover, Ajmal and Thomas[1] applied the
notion of fuzzy sets to lattice theory.

With the research of fuzzy sets, in 1986, Atanassov[2] presented intuitionistic
fuzzy sets which are very effective to deal with vaguenes. The concept of the intu-
itionistic fuzzy sets is a generalization of one of the fuzzy sets. Recently, �oker and
his colleagues [5,6,8], Lee and Lee[17], and Hur and his colleagues[13] introduced
the concept of intuitionistic fuzzy topological spaces using intuitionistic fuzzy sets
and investigated some of it’s properties. In 1989, Biswas[4] introduced the concept
of intuitionistic fuzzy subgroup and studied some of it’s properties. In 2003, Baner-
jee and Basnet [3] investigated intuitionistic fuzzy subgroups and intuitionistic fuzzy
ideals using intuitionistic fuzzy sets. Also, Hur and his colleagues[9-12] studied
variuos propoerties of intuitionistic fuzzy subgroupoids, intuitionistic fuzzy
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subgroups, intuitionistic fuzzy subrings and intuitionistic fuzzy topological groups.
In particular, Hur and his colleagues[14] introduced the concept of intuitionistic
fuzzy ideals and intuitionistic fuzzy bi-ideal of a semigroup and studied some of
their properties. And Yon and Kim[20] introduced the notion of intuitionistic fuzzy
sublattice, filters and ideals, and investigated some of their properties. Moreover,
Hur and his colleagues[16] applied the concept of intuitionistic fuzzy sets to
congruences on a lattice.

In this paper, We discuss the important concept of an intuitionistic fuzzy sub-
lattice or an intuitionistic fuzzy ideal generated by an intuitionistic fuzzy set. In fact,
an intuitionistic fuzzy sublattice generated by an intuitionistic fuzzy set is also
characterized by the level subsets of the given intuitionistic fuzzy set. Moreover, the
notion of an intuitionistic fuzzy convex sublattice is also introduced and discussed.
A pleasing feature of our investigation in this direction is that the unique representation
theorem for convex sublattice is successfully extended to intuitionistic fuzzy setting.
In the last section, we deal with the homomorphic images and pre-images of
intuitionistic fuzzy sublattices. Also, we prove that the homomorphic image of an
intuitionistic fuzzy prime ideal is an intuitionistic fuzzy prime ideal, provided that it
has the sup-property or is IF-invariant.

2. PRELIMINARIES

We will list some concept needed in the later sections.

For sets X, Y and Z, f = (f
1
, f

2
) : X � Y × Z is called a complex mapping if f

1
 : X �

Y and f
2
 : X � Z are mappings.

Throughout this paper, we will denote the unit interval [0; 1] as I. And L = (L, +, .)
denotes a lattice(See[10]), where ” + ” and ” . ” denote the sup and the inf, respectively.

Definition 1.1 [2,5]. Let X be a nonempty set. A complex mapping A = (�
A
, �

A
):

X � I × I is called an intuitionistic fuzzy set(in short, IFS) in X if �
A
(x) + �

A
(x) � 1 for

each x � X, where the mapping �
A
 : X � I and �

A
 : X � I denote the degree of

membership (namely �
A
(x)) and the degree of non-membership (namely �

A
(x)) of

each x � X to A, respectively. In particular, 0~ and 1~ denote the intuitionistic fuzzy
empty set and the intuitionistic fuzzy whole set in a set X defined by 0~(x) = (0, 1)
and 1~(x) = (1, 0) for each x � X, respectively.
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We will denote the set of all IFSs in X as IFS(X).

Definition 1.2 [2]. Let X be a nonempty sets and let A = (�
A
, �

A
) and B = (�

B
, �

B
)

be an IFSs in X. Then

(1) A � B if and only if �
A
 � �

B
 and �

A
 � �

B
.

(2) A = B if and only if A � B and B � A.

(3) Ac = (�
A
, �

A
).

(4) A � B = (�
A
 � �

B
, �

A
 � �

B
).

(5) A � B = (�
A
 � �

B
, �

A
 � �

B
).

Definition 1.3 [5]. Let {A
i
}

i�J
 be an arbitrary family of IFSs in X, where A

i
 = (�

Ai
,

�
Ai

) for each i � J. Then

(1) �A
i
 = (��

Ai
, ��

Ai
).

(2) ��A
i
 = (��

Ai
, ��

Ai
).

2. INTUITIONISTIC FUZZY SUBLATTICES AND
THEIR CHARACTERIZATIONS

In this section, we discuss some basic results. In the process, some well-known
basic concepts of lattice theory are extended to the intuitionistic fuzzy setting. After
systematically introducing the notions of intuitionistic fuzzy ideal, intuitionistic fuzzy
filter, intuitionistic fuzzy prime ideal and intuitionistic fuzzy dual prime ideal, we
provide their characterizations. Also we establish the fact that the concept of level
subsets is going to play an important role in the theory of intuitionistic fuzzy lattices,
as in the case in the theory of intuitionistic fuzzy groups and intuitionistic fuzzy
rings.

Definition 2.1[20]. Let A � IFI(L). Then A is called an intuitionistic fuzzy
sublattice (in short, IFSL) of L if it satisfies the following conditions:

(i) �
A
(x + y) � �

A
(x) � �

A
(y) and �

A
(x + y) � �

A
(x) � �

A
(y) for any x, y � L.

(ii) �
A
(xy) � �

A
(x) � �

A
(y) and �

A
(xy) � �

A
(x) � �

A
(y) for any x, y � L.

We will denote the set of all IFSLs of L as IFSL(L).
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Result 2.A [15, Proposition 3.2]. Let A � IFS(L) and let x, y � L. Then the following
are equivalent:

(1) If x � y, then �
A
(x) � �

A
(y) and �

A
(x) � �

A
(y).

(2) �
A
(xy) � �

A
(x) � �

A
(y) and �

A
(xy) � �

A
(x) � �

A
(y).

(3) �
A
(x + y) � �

A
(x) � �

A
(y) and �

A
(x + y) � �

A
(x) � �

A
(y).

Result 2.B [The dual of Result 2.A, 15, Proposition 3.3]. Let A � IFS(L) and let
x, y � L. Then the following are equivalent:

(1) If x � y, then �
A
(x) � �

A
(y) and �

A
(x) � �

A
(y).

(2) �
A
(xy) � �

A
(x) � �

A
(y) and �

A
(xy) � �

A
(x) � �

A
(y).

(3) �
A
(x + y) � �

A
(x) � �

A
(y) and �

A
(x + y) � �

A
(x) � �

A
(y).

Definition 2.2 [20]. Let A �IFSL(L). Then A is called an

(i) intuitionistic fuzzy ideal(in short, IFI) of L if for any x, y � L x � y in L implies
�

A
(x) � �

A
(y) and �

A
(x) � �

A
(y).

(ii) intuitionistic fuzzy filter(in short, IFF) of L if for any x, y � L x � y in L
implies �

A
(x) � �

A
(y) and �

A
(x) � �

A
(y).

We will denote the set of all IFSLs[resp. IFFs] of S as IFI(L)[resp. IFF(L)].

Result 2.C[15, Theorem 3.4]. Let A � IFSL(L). Then A � IFI(L) [resp. IFF(L)]
if and only if it satisfies any are of the conditions in Result 2.A [resp. Result 2.B].

Definition 2.3 [20]. Let A � IFI(L)[resp. IFF(L)]. Then A is called an intuitionistic
fuzzy prime ideal(in short, IFPI) [resp. prime filter(in short, IFPF)] of L if for any
x, y � L, �

A
(xy) � �

A
(x) � �

A
(y) and �

A
(xy) � �

A
(x) � �

A
(y) [resp. �

A
(x + y) � �

A
(x) �

�
A
(y) and �

A
(x + y) � �

A
(x) � �

A
(y)].

We will denote the set of all IFPIs [resp. IFPFs] of L as IFPI(L)[IFPF(L)].

The following are the immediate results of Results 2.A and 2.B, and Definition
2.3.

Proposition 2.4. Let A � IFI(L). Then the following are equivalent:

(1) A � IFPI(L).

(2) A(xy) = (�
A
(x) � �

A
(y), �

A
(x) � �

A
(y)) for any x, y � L.

(3) A(xy) = A(x) or A(y) for any x, y � L.
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Proposition 2.4 [The dual of Proposition 2.4]. Let A � IFF(L). Then the
following are equivalent:

(1) A � IFPF(L).

(2) A(x + y) = (�
A
(x) � �

A
(y), �

A
(x) � �

A
(y)) for any x, y � L.

(3) A(x + y) = A(x) or A(y) for any x, y � L.

The following results are easily seen.

Corollary 2.4-1. If A � IFI(L) such that Ac � IFF(L), then A, Ac � IFPI(L).

Corollary 2.4-2. Let A � IFS(L). That A � IFPI(L) if and only if Ac � IFPF(L).

Definition 2.5[9]. Let X be a set, let A � IFS(X) and let (�, �) � I × I with � + � � 1.
Then the set A(�,�) = {x � X : �

A
(x) � � and �

A
(x) � �} is called a (�, �)-level subset

of A.

In the following results, we characterize intuitionistic fuzzy sublattices,
intuitionistic fuzzy ideals[filters], intuitionistic fuzzy prime ideals and [resp. prime
filters] in terms of level subsets.

Theorem 2.6. Let A � IFS(L). Then A � IFSL(L) if and only if for each (�, �) �
Im A, A(�,�) is a sublattice of L. Equivalently, A � IFSL(L) if and only if each nonempty
level subset A(�,�) is a sublattice. In this case, A(�,�) is called a level sublattice of L.

Proof. We prove here the second assertion of the theorem. The proof of the first
is the same, except for trivial modifications.

(�): Suppose A � IFSL(L). Let A(�,�) be any nonempty level subset of A and let
x, y � A(�,�). Then �

A
(x) � �, �

A
(x) � � and �

A
(y) � �, �

A
(y) � �. Thus

�
A
(x + y) � �

A
(x) � �

A
(y) � �, �

A
(x + y) � �

A
(x) � �

A
(y) � �

and

�
A
(xy) � �

A
(x) � �

A
(y) � �, �

A
(xy) � �

A
(x) � �

A
(y) � �

So x + y � A(�,�) and xy � A(�,�). Hence A(�,�) is a sublattice of L.

(�): Suppose the necessary condition holds. For any x, y � L, let A(x) = (�, �)
and A(y) = (s, t). Without loss of generality, we can assume that s � � and t � �. Then
A(�,�) � A(s,t). Since x � A(�,�) and y � A(s,t), x, y � A(s,t). Since A(s,t) is a sublattice of L, x
+ y � A(s,t) and xy � A(s,t). Thus
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�
A
(x + y) � s, �

A
(x + y) � t and �

A
(xy) � s,  �

A
(xy) � t.

So

�
A
(x + y) � s = �

A
(x) � �

A
(y), �

A
(x + y) � t = �

A
(x) � �

A
(y)

and

�
A
(xy) � s = �A(x) � �

A
(y), �

A
(xy) � t = �

A
(x) � �

A
(y).

Hence A � IFSL(L). This completes the proof.

It is easy to verify that the set of all level sublattices of an IFSL of a lattice forms
a chain. However, in contrast of the chain level subgroups of an intuitionistic fuzzy
subgroup, the chain of level sublattices of an IFSL may no contain a least element.

In intuitionistic fuzzy group theory, it is well-known that an intuitionistic fuzzy
subgroup of a group attains its supremum at the identity element of the given group.
However, since an intuitionistic fuzzy sublattice may neither attain its supremum
nor its infimum at any element of the lattice, the situation is different in the case of
an intuitionistic fuzzy sublattice of a lattice.

Example 2.7. Let L = �. We define a complex mapping A : L � I × I as follows:
for each x � L,

1
( ) 1 ,

1 nA x
n

� �� � �� ��� �
  for  all  x � < 2n >  ~  < 2n+1 >

for each fixed nonnegative integer n, where < 2n > denote the set of all positive

integers which are multiple of 2n and �
n
 � I with 

1
.

1n n
� �

�
 Then clearly A �

IFS(L). Moreover, we can see that A � IFSL(L) with the following chain of level
sublattices:

. . . ��< 23 >�< 22 >�< 2 >� L.

On the other hand, ”1” is the least element of L and A(1) = (0, 1). But (�
x�L

 �
A
(x),

�
x�L

 �
A
(x)) = (1, 0), which is not attained anywhere by A.

Example 2.8. Let L = � × �. We define subsets L
i
 of L as follows:

L
1
 = {(2, 2), (2, 3), (3, 2), (3, 3)}

L
n
 = {x � L : x � (n + 1, n + 1)}
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for each positive integer n � 2. Now we define a complex mapping A : L � I × I as
follows: for each x � L,

A(x) = (1, 0) for all x � L
1
,

A(x) = 
1

, nn
� ��� �
� �

 for all x � L
n
 ~ L

n–1
, where n � � with n � 2 and �

n
 � I with �

n

+ 
1

1.
n
�

Then clearly A � IFS(L). Moreover, we can see that A � IFSL(L). But (�
x�L

�
A
(x), �

x�L
 �

A
(x)) = (1, 0), which is not attained at the least element (1, 1) of L by A

and infimum is not attained anywhere.

Example 2.9. Let L = {�, �} � {{n} : n � �}. Then clearly L is a lattice under
the ordering of set inclusion with � as its least element and � the greatest element
(See Example 3.13 in [1]). Now consider all the finite sublattices of L of the form

L
1
 = {�, �},

L
n
 = {�, �} ��{ {i} : i � n – 1}, for each n � � and n � 2.

We define a complex mapping A : L � I × I as follows: for each x � L,

A(x) = (1, 0) for x � L
1
,

A(x) = 
1

, nn
� ��� �
� �

 for x � L
n
 ~ L

n–1
, where �

n
 � I with �

n
 + 

1
1

n
�  (See Example 3.1

in [15]).

Also we define a complex mapping B : L � I × I as follows: for each x � L,

B(x) = (0, 1) for x � L
1
,

B(x) = 
1

1 , nn
� �� �� �
� �

 for x � L
n
 ~ L

n–1
, where �

n
 � I with �

n
 + 

1
n

.

Then clearly A, B � IFS(L). Moreover we can see that A, B � IFSL(L). But A
does not attain its infimum, where as B does not attain it supremum.
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Result 2.D[15, Theorem 3.5 and 3.6]. Let A � IFSL(L). Then A � IFI(L)[resp.
A � IFF(L)] if and only if for each (�, �) 2 Im A, A(�,�) is an ideal[resp. filter] of L.

Equivalently, for each A � IFS(L), A � IFI(L)[resp. A � IFF(L)] if and only if
each nonempty level subset A(�,�) is an ideal[resp. filter] of L. In this case, A(�,�) is
called a level ideal[resp. filter] of L.

Theorem 2.10. Let A � IFI(L)[resp. IFF(L)]. Then A � IFPI(L)[resp. IFPF(L)] if
and only if for each (�, �) � Im A, A(�,�) is a prime ideal[resp. dual prime ideal] of L.

Equivalently, for each A � IFS(L), A � IFPI(L)[resp. IFPF(L)] if and only if
each nonempty level subset A(�,�) is a prime ideal[resp. dual prime ideal] of L.

Proof.(�): Suppose A � IFPI(L). Let (�, �) � Im A and a, b � A(�,�). Then
�

A
(ab) � � and �

A
(ab) � �. Since A � IFPI(L), by Proposition 2.4, A(ab) = A(a) or

A(b). Thus

�
A
(a) � �, �

A
(a) � � or �

A
(b) � �, �

A
(b) � �.

So a � A(�,�) or b � A(�,�). Moreover, by Result 2. D, it is clear that A(�,�) is an ideal of
S. Hence A(�,�) is prime.

(�): Suppose each level ideal A(�,�) is prime. Assume that A � IFPI(L). Then, by
Proposition 2.4, there exist a, b � L such that A(ab) � A(a) and A(ab) = A(b). Since
a � IFI(L),

�
A
(ab) > �

A
(a), �

A
(ab) < �

A
(a)

and

�
A
(ab) > �

A
(b), �

A
(ab) < �

A
(b).

Let A(ab) = (�, �). Then ab � A(�,�), but a � A(�,�) and b � A(�,�). This contradicts the
fact that A(�,�) is prime. Hence A � IFPI(L).

The following can be easily verified.

Proposition 2.11. Let {A�}��� � IFSL(L)[resp. IFI(L) and IFF(L)]. Then ����

A� � IFSL(L)[resp. IFI(L) and IFF(L)].

Definition 2.12. Let A � IFS(L). Then the least intuitionistic fuzzy sublattice[resp.
ideal and filter] of L containing A is called the intuitionistic fuzzy sublattice
sublattice[resp. ideal and filter] generated by A.
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Let A be a nonzero intuitionistic fuzzy set in a lattice. Then the existence of a
least intuitionistic fuzzy sublattice containing A is ensured by Proposition 2.11. We
denote the intuitionistic fuzzy sublattice generated by a nonzero intuitionistic fuzzy
set A as [A] and the same notation [A(�,�)] is used for a sublattice generated by a level
subset A(�,�). Similarly, we denote the intuitionistic fuzzy ideal[resp. filter] generated
by A as (A)[resp. [A]].

In the following result, we construct the intuitionistic fuzzy sublattice generated
by an intuitionistic fuzzy set in a specified way. We recall from lattice theory that
the sublattice generated by any subset H of a lattice L consists of the lattice polynomial
functions of the elements of H. That is, if [H] is the sublattice generated by H, then
[H] = {a : a = P(h

0
, h

1
, . . . , h

n–1
), n � 1, h

i
 � H}, for some n-ary polynomial

P(see[17]).

Theorem 2.13. Let A � IFS(L) and let (�, �), (s, t) � I × I such that s > � and
t < �. We define complex mapping A* : S � I × I as follows: for each x � L,

A*(x) = (�, �) if x � [A(�,�)] and x � [A(s,t)].

then A* = [A].

Proof. It is clear that A* � IFS(L). Let (�, �) � Im A* and let x � A*(�,�). Then
clearly either A*(x) = (�, �) or �

A* 
(x) > � and �

A*
 (x) < �.

Case(i): Suppose A*(x) = (�, �). Then, by the definition of A*, x � [A(�,�)]. Thus
A*(�,�) � [A(�,�)].

Case(ii): Suppose ( )A x�� ��  and ( ) .A x�� � �  Let A*(x) = (s, t). Then, by the

definition of A*, x � [A(s,t)]. Since [A(s,t)] � [A(�,�)], x � [A(�,�)]. Thus [A*(�,�)] � [A(�, �)].
So, in all, [A*(�,�)] � [A(�,�)]. Now let x � [A(�,�)] and assume that x � [A*(�,�)]. Then
�

A*
(x) < � and �

A*
(x) > �. Let A*(x) = (s, t). Then

x � [A(s,t)] and x � [A(�0,�0)] for �
0
 > s and �

0
 < t.

Since � > s and � < t, x � [A(s,t)] and x � [A(�,�)]. This contradicts the fact that x �
[A(�,�)]. Thus x � [A*(�,�)]. So [A(�,�)] � [A*(�,�)]. Hence [A*(�,�)] = [A(�,�)].

It is clear that A* � IFSL(L) by Theorem 2.6.

Assume that A � A*. Then there exists x � L such that A(x) = (S, T), �
A
(x) >

�
A*

(x) and �
A
(x) < �

A*
(x). Let A*(x) = (�, �). Then x � [A(�,�)] and x � [A(�0,�0)] for each
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�
0
 > � and �

0
 < �. Since s > � and t < �, x � [A(s,t)]. This contradicts the fact that x

� A(s,t). So A � A*.

Now let B � IFSL(L) such that A � B and let A*(x) = (s, t). Then x � [A(s,t)] and x
� [A(�,�)] for � > s and � < t. Thus x is a lattice polynomial function. So x can be
written as

x = P(h
1
, h

2
, . . . , h

k
), where h

i
 � A(s,t),  i = 1, 2, . . . , k.

Then it can be proved by induction on the rank of x and by using the definition of
intuitionistic fuzzy sublattice that

�
B
(x) � �

B
(h

1
) � �

B
(h

2
) � . . . � �

B
(h

k
)

� �
A
(h

1
) � �

A
(h

2
) � . . . � �

A
(h

k
) � s

and

�
B
(x) � �

B
(h

1
) � �

B
(h

2
) � . . . � �

B
(h

k
)

� �
A
(h

1
) � �

A
(h

2
) � . . . � �

A
(h

k
) � t.

So �
B
(x) � s = �*

A
(x) and �

B
(x) � t = �*

A
(x). Hence A* � B. Therefore A* = [A]. This

completes the proof.

Example 2.14. Let L = � × � be the lattice of Example 2.8. We define a complex
mapping A : L � I × I as follows: for each (m, n) � L,

A((m, n)) = 
1 1 1

, .
2 2m n m n

� ��� �� � �� �
For each n � �, consider the sublattice L

n
 of L defined as follows:

L
n
 = {x � L : x � (n, n)}.

Then the level subsets A(�,�) of A are given by

1 1
,

2 4
1{(1,1)}A L

� �
� �� � � �

and

1
,
2( 2) {( , ) : }

r
r rA m n L m n r
� �
� ��� � � � � �   for each r � �.

Thus it follows that
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1 1 1 1
, ,

2 4 2 4
1[A A L

� � � �
� � � �
� � � �� �

and

1
,
2( 2)

1

r
r r

rA L
� �
� ��� �

��   for each  r � �.

Moreover, we can easily verify that A* = [A] is given by

A*(x) = 
1 1

,
2 4
� �
� �
� �

 for x � L
1

and

1 1
( ) ,

1 2( 3)
n

A x
n r

� �� �
�� �� �� �

  for x � L
n
 ~ L

n–1
 and n � 2.

On the other hand, A((3, 2)) = 
1 5

,
5 14
� �
� �
� �

 but A*((3, 2)) = 
1 1

, .
4 3

� �
� �
� �

 Thus A � A* and it

is clear that A � A*.

In a similar way as in Theorem 2.13, we can obtain the intuitionistic fuzzy ideal
[resp. dual ideal] generated by the intuitionistic fuzzy set. We make use of the fact
that an ideal generated by a subset H of L will be of the form (H] = {a : a � h

1
 + h

2
 +

. . . + h
n
, n � 1 and h

i
 � H} (see[7]).

Theorem 2.15. Let A � IFS(L). We define a complex mapping A* : L � I × I as
follows: for each x � L,

A*(x) = (�, �) if x � (A(�,�)] and x � (A(s,t)] for s > � and t < �.

Then A* = (A].

Theorem 2.15 [The dual of Theorem 2.15]. Let A � IFS(L). We define a
complex mapping A* : L � I × I as follows : for each x � L,

A*(x) = (�, �) if x � [A(�,�)) and x � [A(s,t)) for s > � and t < �.

Then A* = [A).
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3. INTUITIONISTIC FUZZY CONVEXITY AND
ITS CHARACTERIZATIONS

Convex sublattice occupy an important place in the theory of lattices. In this section,
we extend this notion to the intuitionistic fuzzy setting and provide its
characterizations. It is proved that an intersection of an intuitionistic fuzzy ideal and
an intuitionistic fuzzy filter is an intuitionistic fuzzy convex sublattice and every
intuitionistic fuzzy convex sublattice has a unique representation of this type. This
is an intuitionistic fuzzy analog of a famous result of lattice theory.

Definition 3.1[15]. Let A � IFSL(L). Then A is said to be intuitionistic fuzzy
convex (in short, IFCL) if for each interval [a, b] � L and each x � [a, b],

�
A
(x) � �

A
(a) � �

A
(b) and �

A
(x) � �

A
(a) � �

A
(b).

We will denote the set of all IFCLs of L as IFCL(L).

Result 3.A [15, Proposition 3.8]. In a lattice, every IFI(IFF) is an IFCL.

Result 3.B[15, Theorem 3.9]. Let A � IFSL(L). Then A � IFCL(L) if and only
if for each (�, �) � Im A, A(�,�) is a convex sublattice of L.

Result 3.C[15, Theorem 3.10]. If {A�}��� � IFCL(S), then ���� A� � IFCL(L).

Result 3.D [7, Lemma 1]. Let J and H be nonempty subsets of L.

(1) J is an ideal of L if and only if a, b � J implies that a + b � L and a � J, x �
L, x � a imply that x � J.

(2) J = [H] if and only if for each x � J there exists an integer n � 1 and there
exist h

0
, h

1
, . . . , h

n–1
 � H such that x � h

0
 � h

1
 � . . . h

n–1
.

Result 3.E[7, Lemma 6]. Let J be an ideal and let D be a filter. If J � D ���, then
J � D is a convex sublattice, and every convex sublattice can be expressed in this
form in one and only one way.

Now, we will establish an anolog of Result 3.E in terms of intuitionistic fuzzy
sets.

Proposition 3.2. Let A � IFI(L) and let B � IFF(L). If A�B � 0~, then A�B �
IFCL(L). And every intuitionistic fuzzy convex sublattice can be expressed in this
form in one and only one way.
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Proof. The first statement is obvious from Results 3.A and 3.C. Let A � IFCL(L).
Then clearly A � (A] � [A). For each x � L, let (A](x) = (�

0
, �

0
) and let [A)(x) = (s

0
,

t
0
). Without loss of generality, we can assume that �

0
 � s

0
 and �

0
 � t

0
. Then, by

Theorem 2.15,

x � (A(�0,�0)] and x � (A(�,�)] for � > �
0
 and � < �0.

Thus, by Result 3.D(2), there exists y
1
 � A(�0,�0) such that x � y. Similarly, by

Theorem 2.15�,

x � [A(�0,�0)) and x � [A(�,�)) for � > s
0
 and � < t

0
.

Thus there exists 0 0( , )
2

s ty A�  such that y
2
 � x. Since 0 0 0 0( , ) ( , )s tA A � ��  y

1
, y

2
 � 0 0( , ) .A � �

Since A � IFCL(L), by Result 3. B, 0 0( , )A � �  is a sublattice of L. Then x � A(�0,�0).

Thus �
A
(x) � �

0
 and �

A
(x) � �

0
. So

�
A
(x) � �

0
 = �

(A]
(x) � �

[A)
(x) = �

(A]�[A)
(x)

and

�
A
(x) � �

0
 = �

(A]
(x) � �

[A)
(x) = �

(A]�[A)
(x).

Hence (A] � [A) � A. Therefore A = (A] � [A).

Now, we show that this representation is unique. Let A = B � C, where B �
IFI(L) and C � IFF(L). Since A � B, (A] � B. For each a � L, let B(a) = (s

0
, t

0
). Then

a � B(s0,t0). since 0 0 0 0( , ) ( , ), .s t s tA B A B� �  Let 0 0( , ) .s tb A�  Since B � IFI(L), by Result

2.D, 0 0( , )s tB  is an ideal of L. Then, by Result 3.D(1),

0 0( , )s ta c B� �  and 0 0( , )[ ).s tb A�

Since b � a + b and 0 0( , )[ )s tA  is a filter of L, by the dual of Result 3.D(1), a + b �

0 0( , )[ ).s tA  Also, we can see that 0 0 0 0( , ) ( , )[ ) [ ) .s t s tA A�  Thus �
[A)

(a + b) � s
0
 and �

[A)
(a +

b) � t
0
. Since [A) � C, �

C
(a + b) � s

0
 and �

C
(a + b) � t

0
. Moreover, �

B
(a + b) � s

0
 and

�
B
(a + b) � t

0
. So

�
A
(a + b) = �

B�C
(a + b) = �

B
(a + b) � �

C
(a + b) � s

0

and
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�
A
(a + b) = �

B�C
(a + b) = �

B
(a + b) � �

C
(a + b) � t

0
.

Then 0 0( , ) .s ta b A� �  Thus 0 0( , )( ].s ta b A� �  Since a � a + b and 0 0( , )( ]s tA  is the

ideal generated by 0 0 0 0( , ) ( , ), ( ].s t s tA a A�  Since 0 0 0 0 0 0( , ) ( , ) ( , )( ] ( ] , ( ] .s t s t s tA A a A� �  Thus

�
(A]

(a) � s
0
 = �

B
(a) and �

(A]
(a) � s

0
 = �

B
(a). So B � (A]. Hence (A] = B. The dual

argument establishes that [A) = C. Hence the representation is unique. This completes
the proof.

4. HOMOMORPHISM AND INTUITIONISTIC
FUZZY SUBLATTICES

In this section, we discuss the algebraic nature of homomorphic image and preimages
of different types of intuitionistic fuzzy sublattice. To begin with, we will list some
of the results of [20]. Now, without any restriction on the homomorphism, we prove
that the homomorphic image of an intuitionistic fuzzy sublattice is indeed an
intuitionistic fuzzy sublattice and we also improve several other results.

Definition 4.1[9]. Let X be a set and let A � IFS(X). Then A is said to be sup-
property if for each Y � P(X), there exists y

0
 � Y such that A(y

0
) =

( ( ), ( )).y Y A y Y Ay y� �� �� �

Definition 4.2[5]. Let X and Y be nonempty sets and let f : X � Y be a mapping.
Let A = (�

A
, �

A
) be an IFS in X and B = (�

B
, �

B
) be an IFS in Y. Then

(1) the preimage of B under f, denoted by f–1(B), is the IFS in X defined by

f–1(B) = (f–1(�
B
), f–1(�B)),

where f–1(�
B
) = �

B
 � f.

(2) the image of A under f, denoted by f(A), is the IFS in Y defined by

f(A) = (f(�
A
), f(�A)),

where for each y � Y

1
1

( )
( )

1

( ) ( ) ,
( ) ( )( )

0 ( ) ,

Ax f y
f A A

x if f y
y f y

if f y

�
�

�

�

� � ���� � � � �
� ���

�

and
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1
1

( )
( )

1

( ) ( ) ,
( ) ( )( )

0 ( ) .

Ax f y
f A A

v x if f y
v y f v y

if f y

�
�

�

�

� � ��� ��
� ���

�

In particular, if f : L � L� is a lattice homomorphism, A � IFS(L) and B �
IFS(L�), then f(A) is called the homomorphic image of A under f and f–1(B) is called
the homomorphic preimage of B, where L and L� denote lattices, respectively.

Result 4.A[20, Theorems 2.18, 2.19, 2.20 and 2.21]. Let f : L � L� be a lattice
homomorphism.

(1) If f is surjective and A � IFSL(L)[resp. IFI(L) and IFF(L)], then f(A) �
IFSL(L�)[resp. IFI(L�) and IFF(L�)].

(2) If B � IFSL(L�)[resp. IFI(L�) and IFF(L�)], then f–1(B) � IFSL(L)[resp. IFI(L)
and IFF(L)].

Lemma 4.3. Let L and L� be lattices, let f : L � L� be a surjection and let A be an
IFSL with sup property in L. Then

(f(A))(�,�) = f(A(�,�)) for each (�, �) � I × I with � + � � 1.

Proof. Let (�, �) � I × I with � + � � 1 and let y � (f(A))(�,�). Then

1( ) ( )
( ) ( )f A Ax f y
y x��

� � � � � �and 1( ) ( )
( ) ( ) .f A Ax f y

v y v x��
� � ��

Since A has sup property, there exists x
0
 � f–1(y) such that

1 10 ( ) ( )
( ) ( ) ( ) ( ).A A A Ax f y x f y
x x and v y v x� �� �

� � � � �

Thus �
A
(x

0
) � � and �

A
(x

0
) � �. So x

0
 � A(�,�). Since x

0
 � f–1(y), y � f(A(�,�)). Then

(f(A))(�,�) � f(A(�,�)). Now let y � f(A(�,�)). Then there exists x
0
 � A(�,�) such that y =

f(x
0
). Since x

0
 � A(�,�), �

A
(x

0
) � � and �

A
(x

0
) � �. Thus �

f(A)
(y) = 

x�f–1(y) �
A
(x) � � and

�
f(A)

(y) = �
x�f–1(y) �

A
(x) � �.

So y � (f(A))(�,�), i.e., f(A(�,�)) � (f(A))(�,�). Hence (f(A))(�,�) = f(A(�,�)). This completes
the proof.

Proposition 4.4. Let f : L � L� be a lattice epimorphism. If A is an intuitionistic
fuzzy prime ideal[resp. prime filter] with the sup property in L, then f(A) �
IFPI(L�)[resp. IFPF(L�)].
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Proof. Let A be an intuitionistic fuzzy prime ideal with sup property in L. Then,
Result 4.A(1), f(A) � IFI(L�). Let (��) � I × 1 with � + � � 1 such that (f(A))(�,�) � ��
Since A has the sup property, by Lemma 4.2, (f(A))(�,�) = f(A(�,�)). Thus A(�,�) ���.
Since A � IFPI(L), by Theorem 2.10, A(�,�) is a a prime ideal of L. So (f(A))(�,�) is
prime ideal of L�. Hence, by Theorem 2.10, f(A) � IFPI(L�). Similarly, we can see
that f(A) � IFPF(L�).

Definition 4.5[4]. Let f : L � L� be a mapping and let A � IFS(L), where L and
L� are lattices. Then A is said to be IF-invariant if f(x) = f(y) implies A(x) = A(y) for
any x, y � L.

Recall 4.B[3, Proposition 6.6]. Let f : L � L� be a mapping and let A be an IF-
invariant intuitionistic fuzzy set in L. Then f–1(f(A)) = A.

Proposition 4.6. Let f : L � L� be a lattice epimorphism and let A be an IF-
invariant intuitionistic fuzzy prime ideal[resp. prime filter]. Then f(A) � IFPI(L�)[resp.
IFPF(L�)].

Proof. Assume that f(A) � IFPI(L�). Then there exist f(a), f(b) � L� such that

f(A)(f(a) . f(b)) � f(A)(f(a)) and f(A)(f(a)) . f(b)) � f(A)(f(b)).

Since f(A) � IFI(L�),

�
f(A)

(f(a) . f(b)) > �
f(A)

(f(a))v
f(A)

(f(a) . f(b)) < v
f(A)

(f(a))

and

�
f(A)

(f(a) . f(b)) > �
f(A)

(f(b))v
f(A)

(f(a)) . f(b)) < v
f(A)

(f(b)).

Since f is a lattice homomorphism,

1 1 1 1( ( )) ( ( )) ( ( )) ( ( ))
( . ) ( ) ( . ) ( )

f f A f f A f f A f f A
a b a v a b v a� � � �� � � �

and

1 1 1 1( ( )) ( ( )) ( ( )) ( ( ))
( . ) ( ) ( . ) ( ).

f f A f f A f f A f f A
a b b v a b v b� � � �� �� �

Since A is IF-invariant, by Result 4.B,

�
A
(a . b) > �

A
(a) , v

A
(a . b) < v

A
(a)

and
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�
A
(a.b) > �

A
(b), v

A
(a.b) < v

A
(b). This contradicts the fact that A � IFPI(L), Hence

f(A) � IFPI(L�). Similarly, we can see that f(A) � IFPF(L�).

From Proposition 4.5 and Result 4.A(2), we obtain the following result.

Theorem 4.6. Let f : L � L� be a lattice epimorphism and let �[resp. ��] be the
set of all IF-invariant intuitionistic fuzzy prime ideals[resp. filters] of L. Then there
is a one-to-one correspondence between �[resp. ��] and IFPI(L�)[resp. IFPF(L�)].
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