International Review of Fuzzy Mathematics Vol. 4 No. 2 (July-December, 2019)

Received: 11th March 2018 Revised: 15th April 2018 Accepted: 30th June 2019

Reviewer: Congxin Wu

Alireza Gilani & B. N. Waphare

ON ANTIFUZZY NORMAL CLOSED b-IDEALS OF BCI-ALGEBRAS

ABSTRACT: The antifuzzification of normal b-ideal is considered and some related properties are investigated. A characterization of an antifuzzy normal closed b-ideal is given.

2000 Mathematics Subject Classification: 06F35, 03G25, 04A72.

Kywords: Normal b-ideal, lower level cut, antifuzzy normal closed b-ideal.

1. INTRODUCTION

Y. Imai and K. Iseki introduced two classes of abstract algebras : BCKalgebras and BCI-algebras ([4, 5]). It is known that the class of BCK-algebra is a proper subclass of the class of BCI-algebra. Jun [6] defined a doubt fuzzy subalgebra, doubt fuzzy ideal and doubt fuzzy prime ideal in BCI-algebra. In this note, we define an antifuzzy normal closed b-ideal and normal b-ideal and consider the antifuzzification of (normal) b-ideals in BCI-algebras and investigate some related properties. We give a characterization of an antifuzzy normal closed b-ideal.

2. PRELIMINARIES

We recall that a fuzzy subset μ of a set *X* is a function μ from *X* into [0, 1]. Let Im(μ) denote the image set of μ . We will write $a \wedge b$ for min{a, b}, and $a \vee b$ for max {a, b}, where *a* and *b* are any real numbers. Given a fuzzy set μ and $t \in [0, 1]$ we define

 $L(\mu, t) = \{x \in X \mid \mu(x) \le t\}$, which is called lower level cut of μ . Let (X, *, 0) be an algebraic structure. We call it a BCI-algebra when it satisfies the conditions for any $x, y, z \in X$,

- (1) $(x * y) * (x * z) \le z * y$,
- $(2) \quad x * (x * y) \le y,$

- (3) x * x = 0,
- (4) if x * y = y * x = 0 then x = y.

The relation " \leq " is defined as follows: $x \leq y \Leftrightarrow x * y = 0$. It is easy to show that (X, \leq) is a partially ordered set and the following proposition holds.

- (a) x * 0 = x,
- (b) 0 * (x * y) = (0 * x) (0 * y),
- (c) (x * y) * z = (x * z) * y,
- (d) $x \le y$ implies $x * z \le y * z$ and $z * x \le z * y$.

Definition 2.1: Any subset I of X is called closed b-ideal if

- (i) $0 * x \in I$, for all $x \in X$
- (ii) $x, y \in I$ implies $x * (0 * y) \in I$.

Definition 2.2: A non-empty subset *N* of BCI-algebra *X* is said to be normal if $(x * a) * (y * b) \in N$ whenever $x * y \in N$ and $a * b \in N$.

Definition 2.3: A fuzzy set μ in *X* is called antifuzzy subalgebra of *X* if it satisfies the inequality: $\mu(x * y) \le \max{\{\mu(x), \mu(y)\}}$ for all $x, y \in X$.

Example 2.4: Let $X = \{0, a, b, c, d, e\}$ be a set with the following table

*	0	a	b	С	d	е
0	0	b	a	С	d	e
a	a	0	b	d	е	С
b	b	a	0	e	С	d
С	с	d	е	0	b	a
d	d	е	С	a	0	b
е	e	с	d	b	a	0

Then (X, *, 0) is a BCI-algebra. Define $\mu : X \rightarrow [0, 1]$ by

 $\mu(0) = \mu(c) = 0.1 < 0.5 = \mu(x)$ for all $x \in X \setminus 0, c$ }. Then μ is an antifuzzy subalgebra of *X*.

3. MAIN RESULTS

Proposition 3.1: Every antifuzzy subalgebra μ satisfies the inequality

 $\mu(0) \le \mu(x)$, for all $x \le X$.

Proof: Since x * x = 0 for all $x \in X$, we have

$$\mu(0) = \mu(x * x) \le \max \mu(x), \, \mu(x) \} = \mu(x).$$

For any elements x, y of X, let us write $\prod_{n=1}^{n} x * y$ for $x * (\cdots * (x * (x * y)))$, where x occurs *n* times.

Proposition 3.2: Let a fuzzy set μ in *X* be an antifuzzy subalgebra and let $n \in \mathbb{N}$, then

- (i) $\mu(\prod^{n} x * x) \le \mu(x)$, whenever *n* is odd.
- (ii) $\mu(\prod^{n} x * x) = \mu(x)$, whenever *n* is even.

for all $x, y \in X$.

Proof: Let $x \in X$ and assume that *n* is odd. Then n = 2k - 1 for some positive integer *k*. Observe that $\mu(x * x) = \mu(0) \le \mu(x)$. Suppose that $\mu(\prod_{k=1}^{2k-1} x * x) \le \mu(x)$ for positive integer *k*. Then

$$\mu\left(\prod^{2(k+1)-1}x*x\right) = \mu\left(\prod^{2k+1}x*x\right) = \mu\left(\prod^{2k-1}x*x(x*x)\right) = \mu\left(\prod^{2k-1}x*x\right) \le \mu(x)$$

which proves (i). Similarly we obtain the second part.

Definition 3.3: A fuzzy set μ in *X* is called antifuzzy closed *b*-ideal of *X* if,

- (i) $\mu(0 * x) \le \mu(x)$,
- (ii) $\mu(x * (0 * y)) \le \max{\{\mu(x), \mu(y)\}},$

for all $x, y \in X$.

Definition 3.4: A fuzzy set μ in *X* is said to be antifuzzy normal if it satisfies the inequality

$$\mu((x * a) * (y * b)) \le \max\{\mu(x * y), \, \mu(a * b)\}.$$

Example 3.5: If we define a fuzzy set $\mu : X \rightarrow [0, 1]$ by

 $\mu(0) = \mu(a) = \mu(b) = 0.1$ and $\mu(c) = \mu(d) = \mu(e) = 0.4$ in Example 2.4, then μ is an antifuzzy normal set in *X*.

Example 3.6: Let $X = \{0, a, b, c\}$ be a set with the following table.

*	0	a	b	С
0	0	С	b	a
a	а	0	С	b
b	b	a	0	С
С	с	b	a	0

Then (X, *, 0) is a BCI-algebra. If we define $\mu : X \rightarrow [0, 1]$ by

 $\mu(0) < \mu(b) < \mu(a) = \mu(c)$, then μ is an antifuzzy normal set in *X*. Moreover, if we define $\forall : X \rightarrow [0, 1]$ by $\nu(0) = \nu(b) < \nu(a) = \nu(c)$, then ν is also an antifuzzy normal set in *X*.

Theorem 3.7: *Every antifuzzy normal set* μ *in X is an antifuzzy subalgebra of X.*

Proof: $\mu(x * y) = \mu((x * x) * (0 * 0)) \le \max{\{\mu(x * 0), \mu(y * 0)\}} = \max{\{\mu(x), \mu(y)\}},$ then $\mu(x * y) \le \max{\{\mu(x), \mu(y)\}}$. Hence μ is an antifuzzy subalgebra of *X*.

Remark: The converse of Theorem 3.7 is not true. For example, an antifuzzy subalgebra μ in Example 2.4 is not an antifuzzy normal since

 $\mu((b * e) (d * a)) = \mu(b) > \mu(c) = \max\{\mu(b * d), \mu(e * a)\}.$

Definition 3.8: A fuzzy set μ in *X* is called an antifuzzy normal closed *b*-ideal if it is an antifuzzy closed *b*-ideal which is antifuzzy normal.

Example 3.9: The fuzzy set discussed in Example 3.5 and 3.6 are indeed an antifuzzy normal closed *b*-ideal.

Proposition 3.10: If a fuzzy set μ in *X* is an antifuzzy normal closed *b*-ideal then $\mu(x * y) = \mu(y * x)$ for all $x, y \in X$.

Proof: Let $x, y \in X$. Then

 $\mu(x * y) = \mu((x * y) * (x * x)) \le \max\{\mu(x * x), \mu(y * x)\} = \mu(y * x).$ Interchanging *x* with *y*, we obtain $\mu(y * x) \le \mu(x * y)$, which proves the Proposition.

Theorem 3.11: Let μ be an antifuzzy normal closed *b*-ideal. Then the set $X_{\mu} = \{x \in | \mu(x) = \mu(0)\}$ is a normal closed *b*-ideal of *X*.

Proof: It is sufficient to show that X_{μ} is antifuzzy normal. let $a, b, x, y \in X$ be such that $x * y \in X_{\mu}$ and $a * b \in X_{\mu}$. Then $\mu(x * y) = \mu(0) = \mu(a * b)$. Since μ is antifuzzy normal it follows that

 $\mu((x * a)(y * b)) \le \max{\{\mu(x * y), \mu(a * b)\}} = \mu(0)$. Applying Proposition 3.10, we conclude that $\mu((x * a)(y * b)) = \mu(0)$, which shows that $(x * a)(y * b) \in X_{\mu}$. This completes the proof.

Theorem 3.12: The intersection of any antifuzzy normal closed *b*-ideal is also an antifuzzy normal closed *b*-ideal.

Proof: Let $\{\mu_{\alpha} \mid \alpha \in \Omega\}$ be a family of antifuzzy normal closed *b*-ideals and let *x*, *y*, *a*, *b* \in *X*. Then

$$(\bigcap_{\alpha \in \Omega} \mu_{\alpha})(x * a) * (y * b)) = \inf_{\alpha \in \Omega} \mu_{\alpha}((x * a) * (y * b))$$
$$\leq \inf_{\alpha \in \Omega} \max\{\mu_{\alpha}(x * y), \mu_{\alpha}(a * b)\}$$
$$\max\{\inf_{\alpha \in \Omega} \mu_{\alpha}(x * y), \inf_{\alpha \in \Omega} \mu_{\alpha}(a * b)\}$$
$$\max\{(\bigcap_{\alpha \in \Omega} \mu_{\alpha})(x * y), (\bigcap_{\alpha \in \Omega} \mu_{\alpha})(a * b)\}$$

which shows that $\bigcap_{\alpha \in \Omega} \mu_{\alpha}$ is an antifuzzy normal set in *X*, using Theorem 3.7, we conclude that $\bigcap_{\alpha \in \Omega} \mu_{\alpha}$ is an antifuzzy normal closed *b*-ideal.

The union of any set of antifuzzy normal closed *b*-ideals need not be antifuzzy normal *b*-ideal. For example if we define a fuzzy set

$$\delta: X \rightarrow [0, 1]$$
 by $\delta(0) = \delta(d) = 0, 1 < 0.3 = \delta(a) = \delta(b) = \delta(c) = \delta(e)$ in Example 2.4,

then it is also an antifuzzy closed *b*-ideal. Since $(\mu \bigcup \delta)(c * d) = 0.3$ and max{ $(\mu \bigcup \delta)(c), (\mu \bigcup \delta)(d)$ } = 0.1, $\mu \bigcup \delta$ is not an antifuzzy closed *b*-ideals.

4. ANTIFUZZY NORMAL CLOSED *b*-IDEALS

Theorem 4.1: Let *A* be a non-empty subset of *X* and let μ_A be a fuzzy set

$$\mu_{A}(x) = \begin{cases} \alpha & \text{if } x \in A, \\ \beta & \text{otherwise,} \end{cases}$$

for all $x \in X$ and $\alpha, \beta \in [0, 1]$ with $\alpha > \beta$. Then μ_A is an antifuzzy normal closed *b*-ideal if and only if *A* is a normal subalgebra of *X*. Moreover, in this case $X\mu_A = A$.

Proof: Assume that μ_A is an antifuzzy normal closed *b*-ideal. Let $a, b, x, y \in X$ be such that $x * y \in A$ and $a * b \in A$. Then

 $\mu_A((x * a) (y * b)) \le \max\{\mu_A(x * y), \mu(a * b)\} = \alpha$ and so $\mu_A((x * a) * (y * b)) = \alpha$, which shows that $(x * a) (y * b) \in A$. Hence A is a normal subalgebra of X.

Conversely, suppose that A is a normal subalgerba of X and let

a, *b*, *x*, *y X*. If $x * y \in A$ and $a * b \in A$, then (x * a) $(y * b) \in A$ and so $\mu_A((x * a) (y * b)) \alpha = = \max\{\mu_A(x * y), \mu_A(a * b)\}$. If $x * y \notin A$ and $a * b \notin A$, then clearly

$$\mu_{A}((x * a) * (y * b)) \leq \beta = \max\{\mu_{A}(x * y), \mu_{A}(a * b)\}.$$

This shows that μ_A is an antifuzzy normal set. It follows from Theorem 3.7 that μ_A is an antifuzzy normal closed *b*-ideal. Moreover, using Theorem 3.11, we have

$$X_{\mu A} = \{ x \in X | \mu_A(x) = \mu_A(0) \} = \{ x \in X | \mu_A(x) = \alpha \} = A.$$

This completes the proof.

Theorem 4.2: Let μ be a fuzzy set in *X*. Then μ is an antifuzzy normal closed *b*-ideal if and only if the set $L(\mu, \alpha) = \{x \in X | \mu(x) \alpha \}$, is a normal subalgebra of *X* for all $\alpha \in [0, 1]$, where $L(\mu, \alpha) \neq \phi$.

Proof: Let μ be an antifuzzy normal closed *b*-ideal and assume that

 $L(\mu, \alpha) \neq \phi$ for all $\alpha \in [0, 1]$. Let $a, b, x, y \in X$ be such that $x * y \in L(\mu, \alpha)$ and $a * b \in L(\mu, \alpha)$. Then

 $\mu((x * a) (y * b)) \le \max\{\mu(x * y), \mu(a * b)\} \le \alpha$

and thus (x * a) $(y * b) \in L(\mu, \alpha)$. Hence $L(\mu, \alpha)$ is a normal subalgebra of X.

Conversely, suppose that $L(\mu, \alpha) \neq \phi$ is a normal subalgebra of X for every $\alpha \in [0, 1]$. Using Theorem 3.7, it is sufficient to show that μ is an antifuzzy normal set in X. If there are $a_0, b_0, x_0, y_0 \in X$ such that

$$\mu((x_0 * a_0) \ (y_0 * b_0)) > \max\{\mu(x_0 * y_0), \mu(a_0 * b_0)\}.$$

Then by taking

$$\alpha_0 = \frac{1}{2} \left[\mu((x_0 * a_0) \ (y_0 * b_0)) + \max\{\mu(x_0 * y_0), \mu(a_0 * b_0)\} \right]$$

we have

 $\mu((x_0 * a_0) (y_0 * b_0)) > \alpha \ 0 > \max\{\mu(x_0 * y_0), \mu(a_0 * b_0)\}.$ It follows $x_0 * y_0 \in L(\mu, \alpha_0)$ and $a_0 * b_0 \in L(\mu, \alpha_0)$, but $(x_0 * a_0)(y_0 * b_0) \notin L(\mu, \alpha_0)$, a contradiction. Hence μ is an antifuzzy normal, which proves the theorem.

Theorem 4.3: Let μ be an antifuzzy normal closed *b*-ideal with $\text{Im}(\mu) = \{\alpha_i \mid i \in \Omega\}$ where Ω is an arbitrary index set. Then

- (i) there exists a unique $t_0 \in \Omega$ such that $\alpha_i \leq \alpha_{i_0}$ for all $i \in \Omega$,
- (ii) $X_{\mu} = \bigcap_{i \in \Omega} L\mu, \alpha_i = L(\mu, \alpha_{i_0}),$ (iii) $X = \bigcap_{i \in \Omega} L(\mu, \alpha_i).$

Proof: (i) Since $\mu(0) \in \text{Im}(\mu)$, there exists a unique $t_0 \in w$ such that $\mu(0) = \alpha_{i_0}$. It follows from Proposition 3.1, that $\mu(0) = \alpha_{i_0} \leq \mu(x)$, for all $x \in X$ so that $\alpha_{i_0} < \alpha_i$ for all $i \in \Omega$.

(ii) We have

$$L(\mu, \alpha_{i_0}) = \{ x \in X | \ \mu(x) \le \alpha_{i_0} \}$$

= $x \in X | \mu(x) = \alpha_{i_0} \}$
= $\{ x \in X | \mu(x) = \mu(0) \} = X$

Since $\alpha_i \leq \alpha_{i_0}$ for all $i \in \Omega$. It follows $L(\mu, \alpha_{i_0}) = L(\mu, \alpha_i)$, for all $i \in \Omega$. Hence $L(\mu, \alpha_{i_0}) \subseteq \bigcap_{i \in \Omega} L(\mu, \alpha_i)$ and so $L(\mu, \alpha_{i_0}) = \bigcap_{i \in \Omega} L(\mu, \alpha_i)$ because $L_0 \in \Omega$.

(iii) Clearly $\bigcap_{i \in \Omega} L(\mu, \alpha_i) \subseteq X$. For every $x \in X$ there exists $i(x) \in \Omega$ such that $\mu(x) = \alpha_i(x)$. This implies $x \in L(\mu, \alpha_i(x)) \subseteq \bigcap_{i \in \Omega} L(\mu, \alpha_i)$, which proves (iii).

Theorem 4.4: Let μ be an antifuzzy normal closed *b*-ideal and $A = \{L(\mu, \alpha_i) | i \in \Omega\}$ where Ω is an arbitrary index set. Then *A* contains all lower level cuts of μ if and only if μ attains its supremum on all normal subalgebra of *X*.

Proof: Suppose *A* contains all lower level cuts of μ and let *A* be a normal *b*-ideal of *X*. If μ is constant on *A*, then we are done. Assume μ is not constant on *A*. We distinguish the following two cases : (1) A = X and (2) $A \subset X$. For the case (1), we let $\beta = \sup\{\alpha i \mid i \alpha \in \Omega\}$. Then $\alpha_i \leq \beta$ and so $L(\mu, \alpha_i) \subseteq L(\mu, \beta)$ for $i \in \Omega$. Note that $X = L(\mu, 1) \in A$ because *A* contains all lower level cuts of μ . Hence, there exists $j \in \Omega$ such that $\alpha j \in \text{Im}(\mu)$ and $L(\mu, \alpha_j) = X$. It follows that $X = L(\mu, \alpha_j) \subseteq L(\mu, \beta)$ so that $L(\mu, \beta) = L(\mu, \alpha_j) = X$ because every lower level cut of μ is normal *b*-ideal of *X*. Now it is sufficient to show that $= \beta = \alpha_j$. If $\alpha_j < \beta$, then there exist $k \in \Omega$ such that $\alpha k \in \text{Im}(\mu)$ and $\alpha_j < \alpha_k \leq \beta$. This implies that $X = L(\mu, \alpha_j) \subseteq L(\mu, \alpha_k)$, a contradiction. Therefore, $\beta = \alpha_j$. If the case (2) holds, consider the restriction μA of μ to *A*. By Theorem 4.1, μ_A is an antifuzzy normal closed *b*-ideal.

Let $\Omega_A = \{i \in \Omega \mid \mu(y) = \alpha_i, \text{ for some } y \in A\}$ and

 $A_A = \{L(\mu_A, \alpha_i) \mid i \in \Omega_A\}$. Noticing that A_A contains all lower level cuts of μ_A , we conclude that there exists $z \in A$ such that $\mu(z) = \sup\{\mu_A(x) \mid x \in A\}$, which implies that $\mu(z) = \sup\{\mu(x) \mid x \in A\}$.

Conversely, assume that μ attains its supremum on all normal *b*-ideal of *X*. Let $L(\mu, \alpha)$ be a lower level cut of μ . If $\alpha = \alpha_i$ for some $i \in \Omega$, then clearly $L(\mu, \alpha) \in A$. Assume that $\alpha \neq \alpha_i$ for all $i \in \Omega$. Then there does not exist $x \in X$ such that $\mu(x) = \alpha$. Let $A = \{x \in X \mid \mu(x) < \alpha\}$. Let $a, b, x, y \in X$ be such that $x * y \in A$ and $a * b \in A$. Then $\mu(x * y) < \alpha$ and $\mu(a * b) < \alpha$. It follows that $\mu((x * a) (y * b)) \leq \mu\{\mu(x * y), \mu(a * b)\} < \alpha$. So that $(x * a) * (y * b) \in A$. This show that A is a normal b-ideal of X. By hypothesis, there exists $y \in A$ such that $\mu(y) = \sup\{\mu(x) \mid x \in A\}$. Now $\mu(y) \in \operatorname{Im}(\mu) \operatorname{implies} \mu(y) = \alpha_i$ for some $i \in w$. Hence we get $\sup\{\mu(x) \mid x \in A\} = \alpha_i$. Obviously, $\alpha_i \leq \alpha$, and so $\alpha_i < \alpha$ by assumption. Note that there does not exist $z \in X$ such that $\alpha_i < \mu(z) \leq \alpha$. It follows that $L(\mu, \alpha) = L(\mu, \alpha_i) \in A$. This concludes the proof.

Theorem 4.5: Let μ be a fuzzy set in *X* with a finite image Im(μ) = { $\alpha_0, \alpha_1, \dots, \alpha_k$ } where $\alpha_i < \alpha_j$ whenever i > j. Let { $N_n \mid n = 0, 1, \dots, k$ } be a family of normal *b*-ideals of *X* such that

(i) $N_0 \subset N_1 \subset \ldots \subset N_k = N$,

(ii)
$$\mu(N_n) = \alpha n$$
 where $N_n = N_n \setminus N_{n-1}$ and $N_{n-1} = \phi$ for $n = 0, 1, \dots k$.

Then μ is an antifuzzy normal closed *b*-ideal.

Proof: According to Theorem 3.7, it is sufficient to show that μ is an antifuzzy normal set in *X*. Let *a*, *b*, *x*, *y* \in *X*. If $x * y \in \tilde{N}_n$ and $a * b \in \tilde{N}_n$ for every *n*, then (x * a) $(y * b) \in N$. Since N_n is a normal *b*-ideals of *X*. Hence

 $\mu((x * a) * (y * b)) \le \alpha_n = \max\{\mu(x * y), \mu(a * b)\}.$

If $x * y \in \tilde{N}_n$ and $a * b \in \tilde{N}_m$ where $0 \le m < n \le k$, then $x * y \in N_n$ and $a * b \in N_m \subseteq N_n$. It follows that $(x * a) * (y * b) \in N_n$. Therefore, $\mu((x * a) * (y * b)) \le \alpha_n = \mu(x * y)$. Since m < n implies $\alpha_n < \alpha_m$, we have $\mu(a * b) = \alpha_m < \alpha_n$. Consequently,

 $\mu((x * a) * (y * b)) \le \alpha_n = \max{\{\mu(x * y), \mu(a * b)\}}$. Similarly, for the case $x * y \in \tilde{N}_m$ and $a * b \in \tilde{N}_n$ for $0 \le m < n \le k$, proving the result.

ACKNOWLEDGMENT

The authors are grateful to the referee for valuable suggestions and help.

REFERENCES

- [1] Z. Jianming and T. Zhisong, Doubt fuzzy BCI-algebras, IJMMS, 1(2002) 49–56.
- [2] C.S.Hoo, Some fuzzy concept of BCI-algebra, *International Journal of Approximate Reasoning*, **18** (1998) 177–189.
- Y. B. Jun and H. S. Kim, On fuzzy B-algebras, *Czechoslovak Mathematical Journal*, 52 (127) (2002), 375–384.
- [4] Q. P. Hu and X. Li, On proper BCH-algebras, Math. Japon, **30**(1985), 659–661.
- [5] K. Iseki, On BCI-algebras, Math. Seminar Notes 8 (1980), 125–130.
- [6] Y. B Jun, Doubt fuzzy BCK (BCI)-algebras, SJM 20 (1994), No. 3, 351–358.
- [7] L. A. Zadeh, Fuzzy Sets, Inform. Control 8 (1965), 338–353.

Alireza Gilani

Department of Mathematics Islamic Azad University Branch, South Tehran, Tehran, Iran E-mail: gilanial@math.unipune.ernet.in

B. N. Waphare Department of Mathematics University of Pune, Pune, India E-mail: *bnwaph@math.unipune.ernet.in*