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Abstract: In this paper a laminar and linear flow through a leaky tube by solving the momentum and
conservation of energy equations were analytically investigated. With using the Haigen-Poisseuile
equations and defining an unknown function, equations of axial and radial velocity, pressure and
mass transfer were obtained and their profiles were plotted according to different parameters. The
results indicate that the value of coefficient of permeability has an important role on behavior of fluid
flow in a tube with porous walls and with zero permeability coefficient the fluid flow has same
behavior with well known equation of Haigen-Poisseuile flow.
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NOMENCLATURE

V Velocity (ms–1)

P Pressure (pa)

p
0

Atmospheric pressure (pa)

U
0

Inlet velocity (ms–1)

R Radius of tube (m)

r Radius(m)

k Coefficient of permeability (m2s kg–1)

µ Dynamic viscosity(kg m–1 s–1)

j Leakage mass transfer (m s–1)

l Tube length (m)

β Dimensionless parameter 1/ 2( ( ) )
k

R

µβ =

f(z) An arbitrary intermediate function

Published by Global Research Publications, New Delhi, India

* Corresponding Author: ddg_davood@yahoo.com (mirgang@nit.ac.ir )

11

Received:  15th December 2018, Accepted:  22nd March 2019



144 International Journal of Nonlinear Dynamics in Engineering and Sciences

1. INTRODUCTION

Leaky tube is a pipe with leakages around its surface, therefore wall is permeable so that there
is a uniform mass transfer from the wall [1] as shown schematically in Fig.1. Flow in leaky
tube must supply both the forward flow and the leaks. Since some mass passes through the
leaks then the axial mass transfer in direction of pipe length decreases and that is why the
velocity and pressure vary in direction of pipe length.

Figure.1: Schematic View of a Typical Laminar Flow through a Leaky Tube

This mechanism is used in nature and industry. For example in plants the transference of
sap from land to its leaves and branches is done through a stack of pipes which are the same
as leaky tubes[2]. In agriculture industry to spray poison and water the vegetables and in
industry for making the expected fluid flow for lubricating and cooling the machines, leaky
tubes are used in different forms and sizes [3,4]. So analysis of fluid flow and understanding
the quality of velocity, pressure, and mass transfer variations through the leaky tubes is needed.

In this paper, presumptions of flow are as follow:

1. The flow is uniform, steady, fully developed, laminar and symmetric.

2. The fluid is Newtonian and incompressible.

3. The wall is permeable with uniform mass transfer.

4. Inertial and body forces are neglected.

2. PROBLEM FORMULATION

By considering the above presumptions, we have:

V = [ ( , ),0, ( , )]r zV r z V r z (1)

P = p(r, z) (2)

The final goal of solving this problem is determining of equations of fluid penetration from
a leaky tube. In this paper, equations of pressure, radial velocity, axial velocity, mass transit
and quantity of leak were determined.

The Navier-Stokes equations in direction of tube axis (z) and also the continuity equation
were written, it will be as follow [5, 6]:

2

2

1 z zv vp
r

z r r r z

 ∂ ∂∂ ∂  − + µ +   ∂ ∂ ∂ ∂ 
= 0 (3)
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( )1 z
r

v
r v

r r z

∂∂ +
∂ ∂ = 0 (4)

This point must be considered that, as the fluid moves along the tube, the pressure decreases
and consequently the amount of leakage around the tube axis is reduces.

It is necessary to define the parameter of mass transfer which is dimensionally equal to the
radial component of the velocity. Mass transfer was defined by the following equation [7]:

j(z) = ( ) 0k p z p −   (5)

Where j(z) is the mass transfer, p(z) tube pressure, p
0
 the atmospheric pressure and k is

the coefficient of permeability. Considering that the magnitude of leakage is around the radius
of tube, velocity vector, in the tube wall will be:

j(z) = ( ) ( ),r rV r z V z= (6)

From Haigen-Poisseuile equation the values of V
z
 will be[8]:

V
z

= ( )
2

02 1
r

U f z
R

  −     
(7)

In this equation, U
0
 is the average velocity in the tube entrance, and is equal to 0

0 2

Q
U

R
=

π
,

and f(z) is an unknown arbitrary intermediate function that must be determined. Using continuity
equation, the relation between V

r
 and V

z
, from Eq. (1) can be determined as follow:

V
r

=
0

1 r
zV

r dr
r z

∂
−

∂∫ (8)

3. PROBLEM SOLUTION

By differentiating Eq. (7) with respect to z, and substituting it in to Eq. (8) and integrating the
obtained equation with respect to r, V

r
 will be:

V
r

= ( )
2 4

0

1

2

r r
RU f z

R R

    − −′          
(9)

Where

( )f z′ =
f

z

∂
∂

On the other hand, in tube surface where r = R, V
r
 will be:

( ),rV R z = ( ) ( )0

2R

RU
V z f z= − ′ (10)

Now, considering Eq. (3) Navier-Stocks equation in tube axial direction, the value of
p

z

∂
∂

will be:

p

z

∂
∂ = ( ) ( )

2

0
02

8
2 1

U r
f z U f z

R R

    µ − + − ′′        
(11)
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Considering Eqs. (3), (4) and (11) :

p

z

∂
∂ = ( )01

2
R RUdV

f z
k dz k

= − ′′ (12)

Substituting Eq. (10) into Eq. (9), ( )f z′′ will be:

( )f z′′ = ( ) ( )
2

3

16 4
1

K K r
f z f z

R R R

 µ µ  − − ′′     
(13)

In Eq. (13), there is a term of r, which means that f is a function of r and z but we assumed
that f is just a function of z. Now, since the differential equation is contradictory with the first
assumption and also because the latter term in Eq. (13) is negligible in comparison to first one,
this term can be omitted, therefore, the equation will be in the form of:

( ) ( )3

16 K
f z f z

R

µ−′′ = 0 (14)

The above differential equation, is linear and simple to solve. We need two boundary
conditions for solving this equation. Considering the assumptions that are applied in [5,6] that
related to fully development of the flow, the boundary conditions will be:

( )

( )

at   0 0

 and

at   const .

z f z

z f z

= ⇒ =

→ ∞ ⇒ =
As a result we have:

f(z) = exp 4
z

R
 − β   (15)

Where β is a dimensionless parameter, as follow :

β =

1

2k

R

µ 
  

And the absolute pressure p(z) from Eqs. (12) and (14) were determined:

dp

dz
= ( )0 0

2 2

8 8
exp 4

U U z
f z

R R R

µ µ  − = − − β   (16)

Knowing that at z = 0 the pressure is equal to the atmospheric one and by integration from
the above equation, we will have:

p(z) =
0

0

2
exp 4 1

U z
p

R R

µ   + − β −   β  
(17)

according to atmospheric pressure, pressure was expressed . If that is assumed, the relation
about the atmospheric pressure will be:

p
0

= 02
1 exp 4

U L
p

R R

µ   ∆ = − − β   β  
(18)
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Substituting Eq. (18) into Eq. (17), it can be obtained:

p(z) =
02

exp  4 exp  4
U z L

R R R

µ     − β − − β       β  
(19)

In this condition mass transfer will be:

j(z) = ( ) 02 exp  4 exp  4
z L

k p z U
R R

    = β − β − − β        
(20)

And the amount of leakage will be as follows:

Q
L

= ( ) 2
0

0

2 1 1 4 exp 4
L L L

R j z dz R U
R R

    π = π − + β − β        ∫ (21)

And

L

in

Q

Q = 1 1 4 exp 4
L L

R R

    − + β − β        
(22)

And

z

l

Q

Q =
4

1 exp  (  4 ) exp(  4 )l

z

Q Z Z L

Q R R R

β− = − β + − β (23)

The radial velocity is:

V
r

=
2 4

0

1
4 exp 4

2

Z r r
U

R R R

      β − β −             
(24)

And finally, the axial velocity will be:

V
z

=

2

02 exp 4 1
Z r

U
R R

    − β −         
(25)

These equations can be examined by a simple test. If there is not any leakage around the
tube the general equations of Haigen-Poisseuille must be arrived from equations of V

r
 and V

z
.

This condition was investigated and results of this test will be as follow:

If there is not any leakage, the values of coefficient of permeability k and dimensionless
parameter β will be zero and hence the value of radial velocity is zero too. In this case axial
velocity will be as follows:

V
z

= 2
02 (1 ( ) )

r
U

R
− (26)

It is very obvious that in the case of no leakage (k = 0) the profile of axial velocity and
radial velocity will be the well known equation of Haigen-Poisseuille flow.

If the coefficient of permeability be infinite the radial and axial velocities will be as follows;

rV = ∞ and 0zV =
It means that, all of fluid goes out from the walls of tube and therefore the axial velocity

become zero and the radial velocity become infinite.
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4. RESULTS AND DISCUSSION

In following figures velocity of flow in direction r and z, mass transfer parameter and pressure
profile have been shown.

Figure.2: Axial Velocity Profile with Respect to r at Various z and k = 0.1

Figure.3: Axial Velocity Profile with Respect to z at Various k and r = 0.1
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Figure.4: Axial Velocity Profile with Respect to z at Various r and k =0.2

Figure.5: Radial Velocity Profile with Respect to z at Various k and r = 0.1
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Figure.6: Radial Velocity Profile with Respect to z at Various r and k = 0.2

Figure.7: Ratio of Axial Mass Transfer to Entrance Mass Transfer Profile with Respect to z at Various k
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Figure.8: Pressure Profile with Respect to z at Various k.

By consideration of the figures (2-8) the following results can be identified:

1. Variation of axial velocity with respect to radius has same manner with axial velocity
in a pipe without any leakage. The value of velocity is maximum on the pipe axis
whereas it value is zero on the pipe wall (Fig.2).

2. When the coefficient of permeability increases the variations of axial velocity in direction
of pipe length will increase and the axial velocity will proceed to zero (Fig.3).

3. The axial velocity will have the maximum value on the center of the tube and the
minimum value on the wall of tube (Fig.4).

4. On the top of the leaky tube the radial velocity will have a higher value for different
values of permeability coefficient but the radial velocity variations in direction of
tube’s length will have a higher value for small values of permeability coefficient. As
result on one of the section of the leaky tube the radial velocity has less value for small
values of permeability coefficient than higher values of that (Fig.5).

5. On the axis of leaky tube the value of the radial velocity is zero and when the pipe
radius increases the value of radial velocity will increase too. So the radial velocity will
have the maximum value on the wall of leaky tube (Fig.7).

6. When the coefficient of permeability increases the variation of relative mass transfer
in direction of leaky tube length will rise (Fig.7).

7. The pressure decreases in direction of pipe length and when the permeability coefficient
increases the pressure will reduce in each section (Fig.8).

5. CONCLUSIONS

In this paper the laminar flow through a tube with porous walls has been analytically investigated,
in addition the velocity profiles in directions of r and z have been determined. The results
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indicate that when the permeability coefficient increases, in each section the values of axial
velocity and axial mass transfer will decrease. The radial velocity is equal to zero on the axis of
leaky tube and it has the maximum value on the wall of leaky tube and also on top of that. It
decreases in direction of tube axis. The results also indicate that for zero permeability coefficients
the variations of axial velocity and pressure are equal to well known haigen-poisseuile equations.
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