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ABSTRACT: New concept of quantum chemistry, namely chemical bonding field �, is introduced in the context
of Bohmian treatment of Schrödinger equation with u(1) nonlocal gauge transformation of the de Broglie
wavefunction.
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1. INTRODUCTION

In current scientifically quests the international
community arrives at the mysteries Decalogue that has
to be unfolded by the present or next generations of
knowledge or designing the main lines towards which
the human ideatic efforts should be concentrated in
order to equilibrate the historic questions with the
advances in observing and modifying reality.
Eventually they are (see also the inaugural essay of
this Journal issue) [1]:

• What was before the Big-Bang?
• How the living nature has emerged?
• What are the relationships between the genes

and embryos?
• We are alone in Universe?
• We are living a quantum world?
• What is time?
• How the conscience is formed?
• From where comes the ideas?
• What is the specific difference of man among

other creatures?
• How the end of the Word will look like?
Observe that the half of these inquires belongs to

Physics, three to Biology, and the other two to the so
called Neuro-Sciences; where is Chemistry? An honest
answer would place Chemistry at the edges between
Physical and Biological and between Biological and
Neuro Sciences since it really accounts on the
quantification of bonds, either among various
substances or inside and outside of the living organisms.

Therefore, the inner nature of the Chemistry itself
seems to resume at bonding: the structure stability,
the reactivity propensity.

Yet, the Chemistry has to provide a viable answer
to this major problem;

• What the Chemical Bond features?

This question is raised by the somehow ambiguous
nature of chemical bond that equally admit a static and
a dynamic picture when treating an isolated or in
interaction electronic system, respectively. In other
words, although quantum mechanics widely provided
the necessary tools for properly describing the atomic,
molecular and of their interactions, a specific measure
of chemical bond and bonding is still missing.

The present work likes for the first time to
introduce the possible assessment of the chemical
bond while encompassing both structure and
reactivity information within the quantum
mechanical Bohmian context combined with simple
unitary U(1) gauge transformation; it leads with a
simple yet meaningful quantity easy to handle and
use in both macro-and microscopic resolution hoping
in further application of it in all branches of physical-
chemistry; it may eventually be generalized for better
characterizing the environmental interactions (bio-
chemo, neuro-chemo, eco-chemo) and to finally reach
the quantum-classical bridge between the hidden and
observed reality.

2. BASIC DE BROGLIE-BOHM-SCHRÖDINGER
FORMALISM

The starting point resides in considering the de
Broglie-Bohm electronic wavefunction [2],
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with the R-amplitude and S-phase factors given
respectively as:
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in terms of electronic density �, momentum p, total
energy E, and space-time (x,t) coordinates, without
spin.

In these conditions, since one perfumes the
wavefunction partial derivatives respecting space and
time,
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the conventional Schrödinger equation [3]
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takes the real and imaginary forms:
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that can be further arranged as:

� �� � �
� �� �

� � �� �

2 2
0,

R R S
t x m x (6a)

� � �� �� � � �� �� �� ��
� 22 2

2
1 1

0.
2 2

S R S
V

t m R m xx
(6b)

Worth noting that the first equation (6a) recovers in
3D coordinates the charge current (j) conservation
law,
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while the second equation (6b) in 3D,
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extends the basic Schrödinger equation (4) to include
further quantum complexity. It may be clearly seen
since recognizing that:
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one gets from (7b) the total energy expression:
E = T + V + Vqua (9a)

in terms of newly appeared so called quantum
(or Bohm) potential
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Exploring the consequences of the existence of the
Bohm potential (9b) reveals most interesting features
of the fundamental nature of electronic quantum
behavior. We will survey some of them in what
follows.

2.1 Limits of Vqua

From definition (9b) one can easily yield that the
Bohm potential comprises both classical and infinitely
manifested quantum characters:

, 0, ...small quantum particles

0, 0, ...classical particles and limitqua
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2.2 The Case Vqua= T

If the whole particle kinetic energy is “created” from
the quantum potential,

Vqua= T = E – V  (11)
then the quantum potential (9b) resembles the
stationary Schrödinger equation under the form:
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when considering from the first part of (2a) the

equivalence BBR � � .
Note that while factorizing the wavefunction (1)

on spatial and temporal contributions,
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the equality (11) between its extreme parts holds when
the spatial wave function domain is restricted to the
real realm only, i.e.
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�
BB0 (x) � � � S0 = 0 � p = 0 � T = 0 � E = V + V

qua
. (14)

Such situation is specific to electrons in their rest
or s- or Ynl0- states in atoms, encompassing therefore
a complex quantum dynamical equilibrium. Such
result reopens the issue of providing a quantum
analytical base of the first Bohr postulate concerning
the stationary states in bonded quantum systems.

2.3 The First Bohr Postulate Reloaded

We have to show the two ways of the equivalence
between the total force acting upon a particle moving
in a potential field and the time conservation of its
total energy:
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The left-to-right proof is immediate and based on
common analytical mechanics: if one differentiates
both parts of a general total energy there is immediate
that:
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when the left side prescription of (15) applies.
Reciprocally, assuming the explicit time

independence of total energy, we practically have
that:
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Now, implementing (17a) together with other space-
time Bohm S-phase factor relationships,
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in the partial time-derivative operator applied on
equation (7b),
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there is immediate to obtain the left side expression
of (15):

tot quaclasF F F quam x V V
��
� � � � �� ��

����� �����
(18b)

This way, the stationarity Bohr postulate combine
both classical and quantum characters in close
agreement with the eigen- or observable states it
beholds. Further consideration respecting the Bohr

quantification in the Bohm context was elsewhere
addressed [4].

2.4 Locality in Bonding Systems

When both Vqua=T and spatial conservation of total
energy E=V+Vqua are assumed, the particle
localization condition unfolds as:
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leading with the idea that, experimentally, a particle
is observed as corpuscle only when the cloassical force
applied (aka the measurement apparatus) reaches
through its range of action the negative of the
quantum potential associate with the Schrödinger
stationary (or eigen) state.

2.5 Nonlocality in Bonding Systems

Although manifestly in quantum stationarity and
localization the quantum potential (9b) comprises the
inherent nonlocality features as well. For instance, one
could observe that the quantum field is independent
of the intensity of measurement (the magnitude of
aR) but dependent only on its form:
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Moreover, since according with the basic
properties of correct wavefunctions we have that
while the entirely as well as the amplitude of de
Broglie-Bohm wave-packet cancel at “infinitum”,

�
BB 

(x � �) = 0; R (x � �) = 0 (21)
the quantum potential (20) do not vanish
asymptotically, meaning that it does not behave
locally, being distributed in a spatial-temporal
manner assuring the nonlocal or non-separated or
entangled interaction [5].

An immediate generalization for many-body
systems may be as well furnished for the generalized
Schrödinger equation:
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while the N-body quantum potential becomes
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Going to interpret the N-particles quantum field
(22c) influence in nonlocality note that as it is not a
decreasing function of distance the behavior of each
particle may depend non-locally on the configuration
of all others, no matter how far they may be.

In these conditions, the next conceptual issue rises:
• How to understand the existence of individual

objects when non-local entanglement states are
over entire Universe extended?

Such paradox may be fortunately solved out by
means of the fact that not all systems are equally
correlated; actually, analytical independence may be
achieved by considering the total wave function (22b)
as a factorized product of individual independent
wave functions,
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in which case the quantum potential (22c) rewrites as
the sum of individual terms:
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Now, the interactions between each i-subunit may
be treated din traditional (observable) chemical way,
while their inner quantum behavior is driven by non-
local interactions. Nevertheless, despite the present
consideration considerably enlarges the quantum
mechanical concepts and power of interpretation for
the causes of things and of their interactions, the
concrete measure of chemical bonding is still missing
from the Bohmian quantum mechanics–a matter that
is to be in next introduced; it has to be related either
with locality of electronic pairs as well as with the
nonlocality in what delocalization of electrons
is concerned. In other words the chemical bonding
field may be seen as  the critical reality that
transforms the locality in nonlocality and vice-versa;
in this sense, it would be considered as the major
concept in springing life and observable objects in
Universe!

3. INTRODUCING CHEMICAL BONDING FIELD

3.1 Schrödinger Equation for U(1) Wavefunction

Since the chemical bonding is carried by electrons
only, one can see the basic de Broglie-Bohm
wavefunction (1) as belonging to gauge U(1) group
transformation:
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where the chemical field � should account through of
variational principle (Schrödinger equation here) by
the electronic bond, eventually being quantified by
associate corpuscle.

As such, one employs the gauge wavefunction
(24) to compute the actual Schrödinger partial
derivative terms as:
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leading with the decomposition of the corresponding
Schrödinger U(1) equation on the imaginary and real
parts respectively:
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that can be further rearranged as:
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Equations (27) reveal some interesting features
of the chemical bonding to be in next discussed.

3.2 Chemical Field Charge Current

The equation (27a) provides the conserving charge
current with the form:

2

SU(1)j j j
R e

S
m c

�
� �� � � �� � �� �
� �

���� ����
(28)

leaving with idea that additional current is
responsible for the chemical field to be activated,
namely:
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which vanishes when the global gauge condition is
considered, i.e. when

0
x

��
�

�
(30)

Therefore, in order the chemical bonding be created
the local gauge transformation should be used that is

0.
x

��
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�
(31)

In these conditions, the chemical field current (29)
carries specific bonding particles that can be
appropriately called as bondons, closely related with
electrons, in fact with the those electrons involved in
bonding, either as single, lone pair or delocalized, and
having an oriented direction of moving, with an
action depending on chemical field itself �.

3.3 Gauge Chemical Bonding Fields

Nevertheless, another important idea abstracted from
above discussion is that going to search the chemical
field � no global gauge condition as (30) should be
used. Worth noting as well that the presence of the
chemical field do not change the Bohm quantum
potential (9b) which is recovered untouched in (27b)
thus preserving the entanglement of interaction. With
his there follows that in order the de Broglie-Bohm-
Schrödinger formalism and equations (6) to be
invariant under gauge U(1) transformation (24) a
couple of gauge conditions the chemical field has to
fulfilled out of equations (27); they are respectively:
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Now, the chemical field � is found through
combining its spatio-temporal information contained
in equation (32). From condition (32a) is getting that:
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where the vectorial feature of the chemical field
gradient was emphasized on the direction of its
associated charge current (29) fixed by the versor j

�

(j2 = 1). We will maintain such procedure whenever
necessary for avoiding scalar to vector ratios and
preserving the physical sense of the whole
construction as well.

Next, the gradient (33) is replaced in (32b) to
obtain a single equation for the chemical field:
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that can be further rewritten as:
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since calling the relations:
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Equation (35) can be solved for the Laplacian of the
chemical field with general solutions:
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Equation (37), is a special propagation equation
for the chemical field since it links the spatial
Laplacian �2 � = ���with temporal evolution of the
chemical field (��/�t)½; however, it may be
considerable be simplified if assuming the stationary
chemical field, i.e. chemical field as not explicitly
depend on time,

0,
t
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in agreement with the fact that once established the
chemical bonding should be manifested stationary in
order to preserve the stability of the structure it
applies.

With condition (38) we may still have two
solutions for the chemical field.

• One corresponds with the homogeneous
chemical bonding field

0 h bondj

mc
v X

e
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with the constant determined such that the field (39)
to be of the same nature as the Bohm phase action S
in (24).

• The second solution of (37) looks like
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Finally, equation (40) may be integrated to
primarily give:
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that can be projected on bondonic current direction
j
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and then further integrated as:
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from where there is identified both the so called
manifested chemical bond field:
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for a given inter-nuclear distance X
bond

, as well as the
delocalized chemical bond field:
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which is the most general stationary chemical
bonding field without spin.

Worth commenting on the integrand of above
chemical bonding fields, since it accounts for the
entangled distance concerned; as such, the expression
(43b) converges to (43a) when and meaning that the
x(t) ��� and r � X

bond
 meaning that the X

bond 
is (locally)

manifested in the infinite bath of nonlocal (entangled)
interactions. Relation (39) may be as well recovered
from (43b) when the density gradient becomes �� ���
X

bond 
and x(t) ��r � X

bond 
revealing that the electronic

system is completely isolated and with a uniform
charge distribution along bonding (no no-local
interactions admitted).

Another interesting point regards the general
density gradient dependency of the chemical field
(43b), a feature that finely resembles two important
results of quantum chemistry:

• The gradient expansion when chemical
structure and bonding is described in the
context of density functional theory [6];

• The Bader zero flux condition for defining
the basins of bonding [7], that in the present
case is represented by the zero chemical
boning fields, viz.:

. 0j�� �� �� �
����

(44)

It is this last feature the decisive reason that the
aleph function in gauge transformation (24) is
correctly associated with chemical bonding!

3.4 Bondons: Chemical Elementary Particles of
Bonding

Last issue addresses the range values of the chemical
bonding field as well as its physical meaning. For the
typical values enough observing that from the gauge
U(1) transformation (24) that the chemical bonding
field has to be in relation with the inverse order of
the fine-structure constant:

~ ~ 137.03599976 ,bondon
c Joule meter

e Coulomb

�
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�
(45)

an enough small quantity, in quantum range, to be
apparently neglected, however, with crucial role for
chemical bonding where the energies involved are
about orders of 10–19 Joules (electron-volts)!
Nevertheless, for establishing the physical
significance of the chemical bonding quanta field (45)
one can proceed with the chain equivalences:

potential
charge distance

potentialdifferenceenergy distance
~ ~ ~ distance.

differencecharge charge
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The combined phenomenology of the results (45)
and (46) states that: the chemical bonding field caries
bondons with unit quanta (45) along the distance of
bonding within the potential gap of stability or by
tunneling the potential barrier of encountered
bonding attractors.

Alternatively, from the generic form (39) for the
chemical field, if one replaces the velocity by the
kinetic energy and making then use by Heisenberg
relationship, viz.
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T
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the space-chemical bonding field dependence is
simply achieved as:
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where we can assume various instantaneous times
according with the studied phenomena. At one
extreme, when the ration of the first Bohr radius (a0 =
0.52917.10-10 m) to the speed velocity is assumed, t �
t0 = a0/c = 1.76512.10-19 <second>, the two numerical
relations for the chemical bonding field, namely (45)
and (47b), are equated to give the typical lengths of
the entanglement bond X

bond
 � (0,3.19643.10-12)

<meters> with a an observable character in the fine-
structure phenomena ranges. On the other side, on a
chemically femto-second scale, i.e. t

bonding 
~ 10-12 s, one

finds X
bond

  ~ 10-8 m thus widely recovering the custom
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length of the chemical bonding phenomena. Further
studies may be envisaged from this point concerning
the chemical reactivity, times of reactions, i.e. of
tunneling the potential barrier between reactants, at
whatever chemical scale.

Lastly but not at last, the relations (45) and (47)
may be further used in determining the mass of
bondons carried by the chemical field on a given
distance:

2
1

.
2bondons

bond

t
m

X
�
�

(48)

For instance, considering the above typical
chemical bond length, t

bonding 
~

 
10-12 s and  X

bond 
~10-8 m,

one gets the bondon mass about m
bondons 

~ 5.27286.10-31

kg, of electronic mass order, of course, but not
necessary the same since in the course of reaction, due
to the inner undulatory nature of electron and of the
wave-function based phenomena of bonding, the
electronic specific mass may decrease. Note that the
bondon mass decreases faster by broader the bond
distance than the time providing a typical quantum
effect without a macroscopic rationalization. In fact
as increases the entangled distance to be covered by
the chemical interaction not only the time is larger
but also the quantum mass carried by the field
decreases in order the phenomena be unitary, non-
separated, and observable! Most remarkably, the
higher limit of bondonic mass correctly stands the
electronic mass m

0 
~ 9.1094.10-31 kg as easily verified

when the first Bohr radius and associated time are
replaced in (48) formula.

With these the chemical bonding phenomena
should be considered as completely described in the
context of Bohmian quantum mechanics of electrons
without spin. Spin inclusion requires a special separate
study and will be communicated in the years to come.

4. CONCLUSION

Although not among the first ten great mysteries of
the Universe, the chemical bond nature seems to
subsist in many of them, especially in relation with
the existence in a quantum world. As such, as far as
the quantum mechanics opens the way for an
entangled non-local picture of interaction between,
in principle, all things in Universe the Chemistry–
through its bonding level of manifestation–makes
things discernable, observable and at the end
measurable. In supporting this view the de Broglie-
Bohm wavefunction was transformed, actually
rotated in the complex space of phases with a quantity
that was later shown to account for the chemical
bonding field � by means of consequences raised by

Schrödinger invariance condition under such U(1)
transformation. There is remarkable that despite U(1)
gauge transformation is well noted in the Yang-Mills
transformation of fields that helps in explaining the
symmetry broken by creation of elementary particle,
this is the first study that addresses nonlocal gauge
transformation on de Broglie-Bohm-Schrödinger
wave fields, however leading with impressive result
of identifying the chemical bonding field with
observable quantity as electronic density and its
gradients. Moreover, the existence of chemical � fields
implies that the entangled interaction in boning is
carried by associate elementary particles called as
bondons; they have lower mass than electrons for
typical chemical bonding length having the electronic
mass as the superior limit when the first Bohr radius
is set as the bonding length. This way, the present
work opens the possibility of unifying the chemical
interactions through chemical bonding fields and
associate bondons.
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